Last sync: 2:59 hours ago. Sync nowView on Zotero
ta (124)
pure (102)
aek (65)
teng (62)
ness (56)
wit (35)
som (30)
ploy (30)
nick (29)
seminar (27)
moke (22)
star (21)
mint (3)
tan (2)
Papers are sorted by the modified date, which is updated when, e.g., someone reads a paper and adds his/her tag to the paper.

Wednesday 08 October 2025

554) [2025] Scaling Sequence-to-Sequence Generative Neural Rendering
Scaling Sequence-to-Sequence Generative Neural Rendering
Shikun LiuKam Woh NgWonbong JangJiadong GuoJunlin HanHaozhe LiuYiannis DouratsosJuan C. PérezZijian ZhouChi PhungTao XiangJuan-Manuel Pérez-Rúa
We present Kaleido, a family of generative models designed for photorealistic, unified object- and scene-level neural rendering. Kaleido operates on the principle that 3D can be regarded as a specialised sub-domain of video, expressed purely as a sequence-to-sequence image synthesis task. Through a systemic study of scaling sequence-to-sequence generative neural rendering, we introduce key architectural innovations that enable our model to: i) perform generative view synthesis without explicit 3D representations; ii) generate any number of 6-DoF target views conditioned on any number of reference views via a masked autoregressive framework; and iii) seamlessly unify 3D and video modelling within a single decoder-only rectified flow transformer. Within this unified framework, Kaleido leverages large-scale video data for pre-training, which significantly improves spatial consistency and reduces reliance on scarce, camera-labelled 3D datasets -- all without any architectural modifications. Kaleido sets a new state-of-the-art on a range of view synthesis benchmarks. Its zero-shot performance substantially outperforms other generative methods in few-view settings, and, for the first time, matches the quality of per-scene optimisation methods in many-view settings.
pure
553) [2025] RenderFormer: Transformer-based Neural Rendering of Triangle Meshes with Global Illumination
RenderFormer: Transformer-based Neural Rendering of Triangle Meshes with Global Illumination
Chong ZengYue DongPieter PeersHongzhi WuXin Tong
We present RenderFormer, a neural rendering pipeline that directly renders an image from a triangle-based representation of a scene with full global illumination effects and that does not require per-scene training or fine-tuning. Instead of taking a physics-centric approach to rendering, we formulate rendering as a sequence-to-sequence transformation where a sequence of tokens representing triangles with reflectance properties is converted to a sequence of output tokens representing small patches of pixels. RenderFormer follows a two stage pipeline: a view-independent stage that models triangle-to-triangle light transport, and a view-dependent stage that transforms a token representing a bundle of rays to the corresponding pixel values guided by the triangle-sequence from the view-independent stage. Both stages are based on the transformer architecture and are learned with minimal prior constraints. We demonstrate and evaluate RenderFormer on scenes with varying complexity in shape and light transport.
pure

Monday 08 September 2025

552) [2025] Hybrelighter: Combining Deep Anisotropic Diffusion and Scene Reconstruction for On-device Real-time Relighting in Mixed Reality
Hybrelighter: Combining Deep Anisotropic Diffusion and Scene Reconstruction for On-device Real-time Relighting in Mixed Reality
Hanwen ZhaoJohn AkersBaback ElmiehIra Kemelmacher-Shlizerman
Mixed Reality scene relighting, where virtual changes to lighting conditions realistically interact with physical objects, producing authentic illumination and shadows, can be used in a variety of applications. One such application in real estate could be visualizing a room at different times of day and placing virtual light fixtures. Existing deep learning-based relighting techniques typically exceed the real-time performance capabilities of current MR devices. On the other hand, scene understanding methods, such as on-device scene reconstruction, often yield inaccurate results due to scanning limitations, in turn affecting relighting quality. Finally, simpler 2D image filter-based approaches cannot represent complex geometry and shadows. We introduce a novel method to integrate image segmentation, with lighting propagation via anisotropic diffusion on top of basic scene understanding, and the computational simplicity of filter-based techniques. Our approach corrects on-device scanning inaccuracies, delivering visually appealing and accurate relighting effects in real-time on edge devices, achieving speeds as high as 100 fps. We show a direct comparison between our method and the industry standard, and present a practical demonstration of our method in the aforementioned real estate example.
pure
551) [2025] DepthLight: a Single Image Lighting Pipeline for Seamless Integration of Virtual Objects into Real Scenes
DepthLight: a Single Image Lighting Pipeline for Seamless Integration of Virtual Objects into Real Scenes
Raphael ManusMarc ChristieSamuel BoivinPascal Guehl
We present DepthLight, a method to estimate spatial lighting for photorealistic Visual Effects (VFX) using a single image as input. Previous techniques rely either on estimated or captured light representations that fail to account for localized lighting effects, or use simplified lights that do not fully capture the complexity of the illumination process. DepthLight addresses these limitations by using a single LDR image with a limited field of view (LFOV) as an input to compute an emissive texture mesh around the image (a mesh which generates spatial lighting in the scene), producing a simple and lightweight 3D representation for photorealistic object relighting. First, an LDR panorama is generated around the input image using a photorealistic diffusion-based inpainting technique, conditioned on the input image. An LDR to HDR network then reconstructs the full HDR panorama, while an off-the-shelf depth estimation technique generates a mesh representation to finally build a 3D emissive mesh. This emissive mesh approximates the bidirectional light interactions between the scene and the virtual objects that is used to relight virtual objects placed in the scene. We also exploit this mesh to cast shadows from the virtual objects on the emissive mesh, and add these shadows to the original LDR image. This flexible pipeline can be easily integrated into different VFX production workflows. In our experiments, DepthLight shows that virtual objects are seamlessly integrated into real scenes with a visually plausible estimation of the lighting. We compared our results to the ground truth lighting using Unreal Engine, as well as to state-of-the-art approaches that use pure HDRi lighting techniques (see Figure 1). Finally, we validated our approach conducting a user evaluation over 52 participants as well as a comparison to existing techniques.
pure

Friday 05 September 2025

550) [2025] HDR Environment Map Estimation with Latent Diffusion Models
HDR Environment Map Estimation with Latent Diffusion Models
Jack HilliardAdrian HiltonJean-Yves Guillemaut
We advance the field of HDR environment map estimation from a single-view image by establishing a novel approach leveraging the Latent Diffusion Model (LDM) to produce high-quality environment maps that can plausibly light mirror-reflective surfaces. A common issue when using the ERP representation, the format used by the vast majority of approaches, is distortions at the poles and a seam at the sides of the environment map. We remove the border seam artefact by proposing an ERP convolutional padding in the latent autoencoder. Additionally, we investigate whether adapting the diffusion network architecture to the ERP format can improve the quality and accuracy of the estimated environment map by proposing a panoramically-adapted Diffusion Transformer architecture. Our proposed PanoDiT network reduces ERP distortions and artefacts, but at the cost of image quality and plausibility. We evaluate with standard benchmarks to demonstrate that our models estimate high-quality environment maps that perform competitively with state-of-the-art approaches in both image quality and lighting accuracy.
549) [2025] Spatiotemporally Consistent Indoor Lighting Estimation with Diffusion Priors
Spatiotemporally Consistent Indoor Lighting Estimation with Diffusion Priors
Mutian TongRundi WuChangxi Zheng
Indoor lighting estimation from a single image or video remains a challenge due to its highly ill-posed nature, especially when the lighting condition of the scene varies spatially and temporally. We propose a method that estimates from an input video a continuous light field describing the spatiotemporally varying lighting of the scene. We leverage 2D diffusion priors for optimizing such light field represented as a MLP. To enable zero-shot generalization to in-the-wild scenes, we fine-tune a pre-trained image diffusion model to predict lighting at multiple locations by jointly inpainting multiple chrome balls as light probes. We evaluate our method on indoor lighting estimation from a single image or video and show superior performance over compared baselines. Most importantly, we highlight results on spatiotemporally consistent lighting estimation from in-the-wild videos, which is rarely demonstrated in previous works.
pure
548) [2025] Physically Controllable Relighting of Photographs
Physically Controllable Relighting of Photographs
Chris CareagaYağız Aksoy
We present a self-supervised approach to in-the-wild image relighting that enables fully controllable, physically based illumination editing. We achieve this by combining the physical accuracy of traditional rendering with the photorealistic appearance made possible by neural rendering. Our pipeline works by inferring a colored mesh representation of a given scene using monocular estimates of geometry and intrinsic components. This representation allows users to define their desired illumination configuration in 3D. The scene under the new lighting can then be rendered using a path-tracing engine. We send this approximate rendering of the scene through a feed-forward neural renderer to predict the final photorealistic relighting result. We develop a differentiable rendering process to reconstruct in-the-wild scene illumination, enabling self-supervised training of our neural renderer on raw image collections. Our method represents a significant step in bringing the explicit physical control over lights available in typical 3D computer graphics tools, such as Blender, to in-the-wild relighting.
pure
547) [2025] LightSwitch: Multi-view Relighting with Material-guided Diffusion
LightSwitch: Multi-view Relighting with Material-guided Diffusion
Yehonathan LitmanFernando De la TorreShubham Tulsiani
Recent approaches for 3D relighting have shown promise in integrating 2D image relighting generative priors to alter the appearance of a 3D representation while preserving the underlying structure. Nevertheless, generative priors used for 2D relighting that directly relight from an input image do not take advantage of intrinsic properties of the subject that can be inferred or cannot consider multi-view data at scale, leading to subpar relighting. In this paper, we propose Lightswitch, a novel finetuned material-relighting diffusion framework that efficiently relights an arbitrary number of input images to a target lighting condition while incorporating cues from inferred intrinsic properties. By using multi-view and material information cues together with a scalable denoising scheme, our method consistently and efficiently relights dense multi-view data of objects with diverse material compositions. We show that our 2D relighting prediction quality exceeds previous state-of-the-art relighting priors that directly relight from images. We further demonstrate that LightSwitch matches or outperforms state-of-the-art diffusion inverse rendering methods in relighting synthetic and real objects in as little as 2 minutes.
pure
546) [2025] Ouroboros: Single-step Diffusion Models for Cycle-consistent Forward and Inverse Rendering
Ouroboros: Single-step Diffusion Models for Cycle-consistent Forward and Inverse Rendering
Shanlin SunYifan WangHanwen ZhangYifeng XiongQin RenRuogu FangXiaohui XieChenyu You
While multi-step diffusion models have advanced both forward and inverse rendering, existing approaches often treat these problems independently, leading to cycle inconsistency and slow inference speed. In this work, we present Ouroboros, a framework composed of two single-step diffusion models that handle forward and inverse rendering with mutual reinforcement. Our approach extends intrinsic decomposition to both indoor and outdoor scenes and introduces a cycle consistency mechanism that ensures coherence between forward and inverse rendering outputs. Experimental results demonstrate state-of-the-art performance across diverse scenes while achieving substantially faster inference speed compared to other diffusion-based methods. We also demonstrate that Ouroboros can transfer to video decomposition in a training-free manner, reducing temporal inconsistency in video sequences while maintaining high-quality per-frame inverse rendering.
pure
545) [2025] TransLight: Image-Guided Customized Lighting Control with Generative Decoupling
TransLight: Image-Guided Customized Lighting Control with Generative Decoupling
Zongming LiLianghui ZhuHaocheng ShenLongjin RanWenyu LiuXinggang Wang
Most existing illumination-editing approaches fail to simultaneously provide customized control of light effects and preserve content integrity. This makes them less effective for practical lighting stylization requirements, especially in the challenging task of transferring complex light effects from a reference image to a user-specified target image. To address this problem, we propose TransLight, a novel framework that enables high-fidelity and high-freedom transfer of light effects. Extracting the light effect from the reference image is the most critical and challenging step in our method. The difficulty lies in the complex geometric structure features embedded in light effects that are highly coupled with content in real-world scenarios. To achieve this, we first present Generative Decoupling, where two fine-tuned diffusion models are used to accurately separate image content and light effects, generating a newly curated, million-scale dataset of image-content-light triplets. Then, we employ IC-Light as the generative model and train our model with our triplets, injecting the reference lighting image as an additional conditioning signal. The resulting TransLight model enables customized and natural transfer of diverse light effects. Notably, by thoroughly disentangling light effects from reference images, our generative decoupling strategy endows TransLight with highly flexible illumination control. Experimental results establish TransLight as the first method to successfully transfer light effects across disparate images, delivering more customized illumination control than existing techniques and charting new directions for research in illumination harmonization and editing.
pure
544) [2025] PractiLight: Practical Light Control Using Foundational Diffusion Models
PractiLight: Practical Light Control Using Foundational Diffusion Models
Yotam ErelRishabh DabralVladislav GolyanikAmit H. BermanoChristian Theobalt
Light control in generated images is a difficult task, posing specific challenges, spanning over the entire image and frequency spectrum. Most approaches tackle this problem by training on extensive yet domain-specific datasets, limiting the inherent generalization and applicability of the foundational backbones used. Instead, PractiLight is a practical approach, effectively leveraging foundational understanding of recent generative models for the task. Our key insight is that lighting relationships in an image are similar in nature to token interaction in self-attention layers, and hence are best represented there. Based on this and other analyses regarding the importance of early diffusion iterations, PractiLight trains a lightweight LoRA regressor to produce the direct irradiance map for a given image, using a small set of training images. We then employ this regressor to incorporate the desired lighting into the generation process of another image using Classifier Guidance. This careful design generalizes well to diverse conditions and image domains. We demonstrate state-of-the-art performance in terms of quality and control with proven parameter and data efficiency compared to leading works over a wide variety of scenes types. We hope this work affirms that image lighting can feasibly be controlled by tapping into foundational knowledge, enabling practical and general relighting.
pure
543) [2025] Lumen: Consistent Video Relighting and Harmonious Background Replacement with Video Generative Models
Lumen: Consistent Video Relighting and Harmonious Background Replacement with Video Generative Models
Jianshu ZengYuxuan LiuYutong FengChenxuan MiaoZixiang GaoJiwang QuJianzhang ZhangBin WangKun Yuan
Video relighting is a challenging yet valuable task, aiming to replace the background in videos while correspondingly adjusting the lighting in the foreground with harmonious blending. During translation, it is essential to preserve the original properties of the foreground, e.g., albedo, and propagate consistent relighting among temporal frames. In this paper, we propose Lumen, an end-to-end video relighting framework developed on large-scale video generative models, receiving flexible textual description for instructing the control of lighting and background. Considering the scarcity of high-qualified paired videos with the same foreground in various lighting conditions, we construct a large-scale dataset with a mixture of realistic and synthetic videos. For the synthetic domain, benefiting from the abundant 3D assets in the community, we leverage advanced 3D rendering engine to curate video pairs in diverse environments. For the realistic domain, we adapt a HDR-based lighting simulation to complement the lack of paired in-the-wild videos. Powered by the aforementioned dataset, we design a joint training curriculum to effectively unleash the strengths of each domain, i.e., the physical consistency in synthetic videos, and the generalized domain distribution in realistic videos. To implement this, we inject a domain-aware adapter into the model to decouple the learning of relighting and domain appearance distribution. We construct a comprehensive benchmark to evaluate Lumen together with existing methods, from the perspectives of foreground preservation and video consistency assessment. Experimental results demonstrate that Lumen effectively edit the input into cinematic relighted videos with consistent lighting and strict foreground preservation. Our project page: https://lumen-relight.github.io/
pure

Thursday 14 August 2025

542) [2025] RelightVid: Temporal-Consistent Diffusion Model for Video Relighting
RelightVid: Temporal-Consistent Diffusion Model for Video Relighting
Ye FangZeyi SunShangzhan ZhangTong WuYinghao XuPan ZhangJiaqi WangGordon WetzsteinDahua Lin
Diffusion models have demonstrated remarkable success in image generation and editing, with recent advancements enabling albedo-preserving image relighting. However, applying these models to video relighting remains challenging due to the lack of paired video relighting datasets and the high demands for output fidelity and temporal consistency, further complicated by the inherent randomness of diffusion models. To address these challenges, we introduce RelightVid, a flexible framework for video relighting that can accept background video, text prompts, or environment maps as relighting conditions. Trained on in-the-wild videos with carefully designed illumination augmentations and rendered videos under extreme dynamic lighting, RelightVid achieves arbitrary video relighting with high temporal consistency without intrinsic decomposition while preserving the illumination priors of its image backbone.
pure
541) [2025] IllumiCraft: Unified Geometry and Illumination Diffusion for Controllable Video Generation
IllumiCraft: Unified Geometry and Illumination Diffusion for Controllable Video Generation
Yuanze LinYi-Wen ChenYi-Hsuan TsaiRonald ClarkMing-Hsuan Yang
Although diffusion-based models can generate high-quality and high-resolution video sequences from textual or image inputs, they lack explicit integration of geometric cues when controlling scene lighting and visual appearance across frames. To address this limitation, we propose IllumiCraft, an end-to-end diffusion framework accepting three complementary inputs: (1) high-dynamic-range (HDR) video maps for detailed lighting control; (2) synthetically relit frames with randomized illumination changes (optionally paired with a static background reference image) to provide appearance cues; and (3) 3D point tracks that capture precise 3D geometry information. By integrating the lighting, appearance, and geometry cues within a unified diffusion architecture, IllumiCraft generates temporally coherent videos aligned with user-defined prompts. It supports background-conditioned and text-conditioned video relighting and provides better fidelity than existing controllable video generation methods. Project Page: https://yuanze-lin.me/IllumiCraft_page
pure

Wednesday 13 August 2025

540) [2025] IntrinsicEdit: Precise generative image manipulation in intrinsic space
IntrinsicEdit: Precise generative image manipulation in intrinsic space
Linjie LyuValentin DeschaintreYannick Hold-GeoffroyMiloš HašanJae Shin YoonThomas LeimkühlerChristian TheobaltIliyan Georgiev
Generative diffusion models have advanced image editing with high-quality results and intuitive interfaces such as prompts and semantic drawing. However, these interfaces lack precise control, and the associated methods typically specialize on a single editing task. We introduce a versatile, generative workflow that operates in an intrinsic-image latent space, enabling semantic, local manipulation with pixel precision for a range of editing operations. Building atop the RGB-X diffusion framework, we address key challenges of identity preservation and intrinsic-channel entanglement. By incorporating exact diffusion inversion and disentangled channel manipulation, we enable precise, efficient editing with automatic resolution of global illumination effects -- all without additional data collection or model fine-tuning. We demonstrate state-of-the-art performance across a variety of tasks on complex images, including color and texture adjustments, object insertion and removal, global relighting, and their combinations.
pure
539) [2024] RGB$\leftrightarrow$X: Image decomposition and synthesis using material- and lighting-aware diffusion models
RGB$\leftrightarrow$X: Image decomposition and synthesis using material- and lighting-aware diffusion models
Zheng ZengValentin DeschaintreIliyan GeorgievYannick Hold-GeoffroyYiwei HuFujun LuanLing-Qi YanMiloš Hašan
The three areas of realistic forward rendering, per-pixel inverse rendering, and generative image synthesis may seem like separate and unrelated sub-fields of graphics and vision. However, recent work has demonstrated improved estimation of per-pixel intrinsic channels (albedo, roughness, metallicity) based on a diffusion architecture; we call this the RGB$\rightarrow$X problem. We further show that the reverse problem of synthesizing realistic images given intrinsic channels, X$\rightarrow$RGB, can also be addressed in a diffusion framework. Focusing on the image domain of interior scenes, we introduce an improved diffusion model for RGB$\rightarrow$X, which also estimates lighting, as well as the first diffusion X$\rightarrow$RGB model capable of synthesizing realistic images from (full or partial) intrinsic channels. Our X$\rightarrow$RGB model explores a middle ground between traditional rendering and generative models: we can specify only certain appearance properties that should be followed, and give freedom to the model to hallucinate a plausible version of the rest. This flexibility makes it possible to use a mix of heterogeneous training datasets, which differ in the available channels. We use multiple existing datasets and extend them with our own synthetic and real data, resulting in a model capable of extracting scene properties better than previous work and of generating highly realistic images of interior scenes.
pure
538) [2024] Slicedit: Zero-Shot Video Editing With Text-to-Image Diffusion Models Using Spatio-Temporal Slices
Slicedit: Zero-Shot Video Editing With Text-to-Image Diffusion Models Using Spatio-Temporal Slices
Nathaniel CohenVladimir KulikovMatan KleinerInbar Huberman-SpiegelglasTomer Michaeli
Text-to-image (T2I) diffusion models achieve state-of-the-art results in image synthesis and editing. However, leveraging such pretrained models for video editing is considered a major challenge. Many existing works attempt to enforce temporal consistency in the edited video through explicit correspondence mechanisms, either in pixel space or between deep features. These methods, however, struggle with strong nonrigid motion. In this paper, we introduce a fundamentally different approach, which is based on the observation that spatiotemporal slices of natural videos exhibit similar characteristics to natural images. Thus, the same T2I diffusion model that is normally used only as a prior on video frames, can also serve as a strong prior for enhancing temporal consistency by applying it on spatiotemporal slices. Based on this observation, we present Slicedit, a method for text-based video editing that utilizes a pretrained T2I diffusion model to process both spatial and spatiotemporal slices. Our method generates videos that retain the structure and motion of the original video while adhering to the target text. Through extensive experiments, we demonstrate Slicedit's ability to edit a wide range of real-world videos, confirming its clear advantages compared to existing competing methods. Webpage: https://matankleiner.github.io/slicedit/
pure
537) [2025] TC-Light: Temporally Coherent Generative Rendering for Realistic World Transfer
TC-Light: Temporally Coherent Generative Rendering for Realistic World Transfer
Yang LiuChuanchen LuoZimo TangYingyan LiYuran YangYuanyong NingLue FanZhaoxiang ZhangJunran Peng
Illumination and texture editing are critical dimensions for world-to-world transfer, which is valuable for applications including sim2real and real2real visual data scaling up for embodied AI. Existing techniques generatively re-render the input video to realize the transfer, such as video relighting models and conditioned world generation models. Nevertheless, these models are predominantly limited to the domain of training data (e.g., portrait) or fall into the bottleneck of temporal consistency and computation efficiency, especially when the input video involves complex dynamics and long durations. In this paper, we propose TC-Light, a novel generative renderer to overcome these problems. Starting from the video preliminarily relighted by an inflated video relighting model, it optimizes appearance embedding in the first stage to align global illumination. Then it optimizes the proposed canonical video representation, i.e., Unique Video Tensor (UVT), to align fine-grained texture and lighting in the second stage. To comprehensively evaluate performance, we also establish a long and highly dynamic video benchmark. Extensive experiments show that our method enables physically plausible re-rendering results with superior temporal coherence and low computation cost. The code and video demos are available at https://dekuliutesla.github.io/tclight/.
pure

Monday 11 August 2025

536) [2025] tandaily/Awesome-Relighting
tandaily/Awesome-Relighting
pure
535) [2025] SAIL: Self-supervised Albedo Estimation from Real Images with a Latent Diffusion Model
SAIL: Self-supervised Albedo Estimation from Real Images with a Latent Diffusion Model
Hala DjeghimNathan PiascoLuis RoldãoMoussab BenneharDzmitry TsishkouCéline LoscosDésiré Sidibé
Intrinsic image decomposition aims at separating an image into its underlying albedo and shading components, isolating the base color from lighting effects to enable downstream applications such as virtual relighting and scene editing. Despite the rise and success of learning-based approaches, intrinsic image decomposition from real-world images remains a significant challenging task due to the scarcity of labeled ground-truth data. Most existing solutions rely on synthetic data as supervised setups, limiting their ability to generalize to real-world scenes. Self-supervised methods, on the other hand, often produce albedo maps that contain reflections and lack consistency under different lighting conditions. To address this, we propose SAIL, an approach designed to estimate albedo-like representations from single-view real-world images. We repurpose the prior knowledge of a latent diffusion model for unconditioned scene relighting as a surrogate objective for albedo estimation. To extract the albedo, we introduce a novel intrinsic image decomposition fully formulated in the latent space. To guide the training of our latent diffusion model, we introduce regularization terms that constrain both the lighting-dependent and independent components of our latent image decomposition. SAIL predicts stable albedo under varying lighting conditions and generalizes to multiple scenes, using only unlabeled multi-illumination data available online.
pure
534) [2025] DreamLight: Towards Harmonious and Consistent Image Relighting
DreamLight: Towards Harmonious and Consistent Image Relighting
Yong LiuWenpeng XiaoQianqian WangJunlin ChenShiyin WangYitong WangXinglong WuYansong Tang
We introduce a model named DreamLight for universal image relighting in this work, which can seamlessly composite subjects into a new background while maintaining aesthetic uniformity in terms of lighting and color tone. The background can be specified by natural images (image-based relighting) or generated from unlimited text prompts (text-based relighting). Existing studies primarily focus on image-based relighting, while with scant exploration into text-based scenarios. Some works employ intricate disentanglement pipeline designs relying on environment maps to provide relevant information, which grapples with the expensive data cost required for intrinsic decomposition and light source. Other methods take this task as an image translation problem and perform pixel-level transformation with autoencoder architecture. While these methods have achieved decent harmonization effects, they struggle to generate realistic and natural light interaction effects between the foreground and background. To alleviate these challenges, we reorganize the input data into a unified format and leverage the semantic prior provided by the pretrained diffusion model to facilitate the generation of natural results. Moreover, we propose a Position-Guided Light Adapter (PGLA) that condenses light information from different directions in the background into designed light query embeddings, and modulates the foreground with direction-biased masked attention. In addition, we present a post-processing module named Spectral Foreground Fixer (SFF) to adaptively reorganize different frequency components of subject and relighted background, which helps enhance the consistency of foreground appearance. Extensive comparisons and user study demonstrate that our DreamLight achieves remarkable relighting performance.
pure
533) [2025] IntrinsiX: High-Quality PBR Generation using Image Priors
IntrinsiX: High-Quality PBR Generation using Image Priors
Peter KocsisLukas HölleinMatthias Nießner
We introduce IntrinsiX, a novel method that generates high-quality intrinsic images from text description. In contrast to existing text-to-image models whose outputs contain baked-in scene lighting, our approach predicts physically-based rendering (PBR) maps. This enables the generated outputs to be used for content creation scenarios in core graphics applications that facilitate re-lighting, editing, and texture generation tasks. In order to train our generator, we exploit strong image priors, and pre-train separate models for each PBR material component (albedo, roughness, metallic, normals). We then align these models with a new cross-intrinsic attention formulation that concatenates key and value features in a consistent fashion. This allows us to exchange information between each output modality and to obtain semantically coherent PBR predictions. To ground each intrinsic component, we propose a rendering loss which provides image-space signals to constrain the model, thus facilitating sharp details also in the output BRDF properties. Our results demonstrate detailed intrinsic generation with strong generalization capabilities that outperforms existing intrinsic image decomposition methods used with generated images by a significant margin. Finally, we show a series of applications, including re-lighting, editing, and text-conditioned room-scale PBR texture generation.
pure

Sunday 10 August 2025

532) [2025] Uni-Renderer: Unifying Rendering and Inverse Rendering Via Dual Stream Diffusion
Uni-Renderer: Unifying Rendering and Inverse Rendering Via Dual Stream Diffusion
Zhifei ChenTianshuo XuWenhang GeLeyi WuDongyu YanJing HeLuozhou WangLu ZengShunsi ZhangYingcong Chen
Rendering and inverse rendering are pivotal tasks in both computer vision and graphics. The rendering equation is the core of the two tasks, as an ideal conditional distribution transfer function from intrinsic properties to RGB images. Despite achieving promising results of existing rendering methods, they merely approximate the ideal estimation for a specific scene and come with a high computational cost. Additionally, the inverse conditional distribution transfer is intractable due to the inherent ambiguity. To address these challenges, we propose a data-driven method that jointly models rendering and inverse rendering as two conditional generation tasks within a single diffusion framework. Inspired by UniDiffuser, we utilize two distinct time schedules to model both tasks, and with a tailored dual streaming module, we achieve cross-conditioning of two pre-trained diffusion models. This unified approach, named Uni-Renderer, allows the two processes to facilitate each other through a cycle-consistent constrain, mitigating ambiguity by enforcing consistency between intrinsic properties and rendered images. Combined with a meticulously prepared dataset, our method effectively decomposition of intrinsic properties and demonstrates a strong capability to recognize changes during rendering. We will open-source our training and inference code to the public, fostering further research and development in this area.
pure

Saturday 09 August 2025

531) [2025] Physically Controllable Relighting of Photographs
Physically Controllable Relighting of Photographs
Chris CareagaYağız Aksoy
We present a self-supervised approach to in-the-wild image relighting that enables fully controllable, physically based illumination editing. We achieve this by combining the physical accuracy of traditional rendering with the photorealistic appearance made possible by neural rendering. Our pipeline works by inferring a colored mesh representation of a given scene using monocular estimates of geometry and intrinsic components. This representation allows users to define their desired illumination configuration in 3D. The scene under the new lighting can then be rendered using a path-tracing engine. We send this approximate rendering of the scene through a feed-forward neural renderer to predict the final photorealistic relighting result. We develop a differentiable rendering process to reconstruct in-the-wild scene illumination, enabling self-supervised training of our neural renderer on raw image collections. Our method represents a significant step in bringing the explicit physical control over lights available in typical 3D computer graphics tools, such as Blender, to in-the-wild relighting.
pure
530) [2025] HDR Environment Map Estimation with Latent Diffusion Models
HDR Environment Map Estimation with Latent Diffusion Models
Jack HilliardAdrian HiltonJean-Yves Guillemaut
We advance the field of HDR environment map estimation from a single-view image by establishing a novel approach leveraging the Latent Diffusion Model (LDM) to produce high-quality environment maps that can plausibly light mirror-reflective surfaces. A common issue when using the ERP representation, the format used by the vast majority of approaches, is distortions at the poles and a seam at the sides of the environment map. We remove the border seam artefact by proposing an ERP convolutional padding in the latent autoencoder. Additionally, we investigate whether adapting the diffusion network architecture to the ERP format can improve the quality and accuracy of the estimated environment map by proposing a panoramically-adapted Diffusion Transformer architecture. Our proposed PanoDiT network reduces ERP distortions and artefacts, but at the cost of image quality and plausibility. We evaluate with standard benchmarks to demonstrate that our models estimate high-quality environment maps that perform competitively with state-of-the-art approaches in both image quality and lighting accuracy.
pure

Friday 08 August 2025

529) [2025] Hybrid Mesh-Gaussian Representation for Efficient Indoor Scene Reconstruction
Hybrid Mesh-Gaussian Representation for Efficient Indoor Scene Reconstruction
Binxiao HuangZhihao LiShiyong LiuXiao TangJiajun TangJiaqi LinYuxin ChengZhenyu ChenXiaofei WuNgai Wong
3D Gaussian splatting (3DGS) has demonstrated exceptional performance in image-based 3D reconstruction and real-time rendering. However, regions with complex textures require numerous Gaussians to capture significant color variations accurately, leading to inefficiencies in rendering speed. To address this challenge, we introduce a hybrid representation for indoor scenes that combines 3DGS with textured meshes. Our approach uses textured meshes to handle texture-rich flat areas, while retaining Gaussians to model intricate geometries. The proposed method begins by pruning and refining the extracted mesh to eliminate geometrically complex regions. We then employ a joint optimization for 3DGS and mesh, incorporating a warm-up strategy and transmittance-aware supervision to balance their contributions seamlessly.Extensive experiments demonstrate that the hybrid representation maintains comparable rendering quality and achieves superior frames per second FPS with fewer Gaussian primitives.
528) [2025] DiFaReli++: Diffusion Face Relighting with Consistent Cast Shadows
DiFaReli++: Diffusion Face Relighting with Consistent Cast Shadows
Puntawat PonglertnapakornNontawat TritrongSupasorn Suwajanakorn
We introduce a novel approach to single-view face relighting in the wild, addressing challenges such as global illumination and cast shadows. A common scheme in recent methods involves intrinsically decomposing an input image into 3D shape, albedo, and lighting, then recomposing it with the target lighting. However, estimating these components is error-prone and requires many training examples with ground-truth lighting to generalize well. Our work bypasses the need for accurate intrinsic estimation and can be trained solely on 2D images without any light stage data, relit pairs, multi-view images, or lighting ground truth. Our key idea is to leverage a conditional diffusion implicit model (DDIM) for decoding a disentangled light encoding along with other encodings related to 3D shape and facial identity inferred from off-the-shelf estimators. We propose a novel conditioning technique that simplifies modeling the complex interaction between light and geometry. It uses a rendered shading reference along with a shadow map, inferred using a simple and effective technique, to spatially modulate the DDIM. Moreover, we propose a single-shot relighting framework that requires just one network pass, given pre-processed data, and even outperforms the teacher model across all metrics. Our method realistically relights in-the-wild images with temporally consistent cast shadows under varying lighting conditions. We achieve state-of-the-art performance on the standard benchmark Multi-PIE and rank highest in user studies.

Friday 29 November 2024

527) [2021] Extracting Triangular 3D Models, Materials, and Lighting From Images
Extracting Triangular 3D Models, Materials, and Lighting From Images
Jacob MunkbergJon HasselgrenTianchang ShenJun GaoWenzheng ChenAlex EvansThomas MüllerSanja Fidler
We present an efficient method for joint optimization of topology, materials and lighting from multi-view image observations. Unlike recent multi-view reconstruction approaches, which typically produce entangled 3D representations encoded in neural networks, we output triangle meshes with spatially-varying materials and environment lighting that can be deployed in any traditional graphics engine unmodified. We leverage recent work in differentiable rendering, coordinate-based networks to compactly represent volumetric texturing, alongside differentiable marching tetrahedrons to enable gradient-based optimization directly on the surface mesh. Finally, we introduce a differentiable formulation of the split sum approximation of environment lighting to efficiently recover all-frequency lighting. Experiments show our extracted models used in advanced scene editing, material decomposition, and high quality view interpolation, all running at interactive rates in triangle-based renderers (rasterizers and path tracers). Project website: https://nvlabs.github.io/nvdiffrec/ .
pure
526) [2023] PiMAE: Point Cloud and Image Interactive Masked Autoencoders for 3D Object Detection
PiMAE: Point Cloud and Image Interactive Masked Autoencoders for 3D Object Detection
Anthony ChenKevin ZhangRenrui ZhangZihan WangYuheng LuYandong GuoShanghang Zhang
Masked Autoencoders learn strong visual representations and achieve state-of-the-art results in several independent modalities, yet very few works have addressed their capabilities in multi-modality settings. In this work, we focus on point cloud and RGB image data, two modalities that are often presented together in the real world, and explore their meaningful interactions. To improve upon the cross-modal synergy in existing works, we propose PiMAE, a self-supervised pre-training framework that promotes 3D and 2D interaction through three aspects. Specifically, we first notice the importance of masking strategies between the two sources and utilize a projection module to complementarily align the mask and visible tokens of the two modalities. Then, we utilize a well-crafted two-branch MAE pipeline with a novel shared decoder to promote cross-modality interaction in the mask tokens. Finally, we design a unique cross-modal reconstruction module to enhance representation learning for both modalities. Through extensive experiments performed on large-scale RGB-D scene understanding benchmarks (SUN RGB-D and ScannetV2), we discover it is nontrivial to interactively learn point-image features, where we greatly improve multiple 3D detectors, 2D detectors, and few-shot classifiers by 2.9%, 6.7%, and 2.4%, respectively. Code is available at https://github.com/BLVLab/PiMAE.
525) [2023] Accidental Light Probes
Accidental Light Probes
Hong-Xing YuSamir AgarwalaCharles HerrmannRichard SzeliskiNoah SnavelyJiajun WuDeqing Sun
Recovering lighting in a scene from a single image is a fundamental problem in computer vision. While a mirror ball light probe can capture omnidirectional lighting, light probes are generally unavailable in everyday images. In this work, we study recovering lighting from accidental light probes (ALPs) -- common, shiny objects like Coke cans, which often accidentally appear in daily scenes. We propose a physically-based approach to model ALPs and estimate lighting from their appearances in single images. The main idea is to model the appearance of ALPs by photogrammetrically principled shading and to invert this process via differentiable rendering to recover incidental illumination. We demonstrate that we can put an ALP into a scene to allow high-fidelity lighting estimation. Our model can also recover lighting for existing images that happen to contain an ALP.
524) [2020] EMLight: Lighting Estimation via Spherical Distribution Approximation
EMLight: Lighting Estimation via Spherical Distribution Approximation
Fangneng ZhanChanggong ZhangYingchen YuYuan ChangShijian LuFeiying MaXuansong Xie
Illumination estimation from a single image is critical in 3D rendering and it has been investigated extensively in the computer vision and computer graphic research community. On the other hand, existing works estimate illumination by either regressing light parameters or generating illumination maps that are often hard to optimize or tend to produce inaccurate predictions. We propose Earth Mover Light (EMLight), an illumination estimation framework that leverages a regression network and a neural projector for accurate illumination estimation. We decompose the illumination map into spherical light distribution, light intensity and the ambient term, and define the illumination estimation as a parameter regression task for the three illumination components. Motivated by the Earth Mover distance, we design a novel spherical mover's loss that guides to regress light distribution parameters accurately by taking advantage of the subtleties of spherical distribution. Under the guidance of the predicted spherical distribution, light intensity and ambient term, the neural projector synthesizes panoramic illumination maps with realistic light frequency. Extensive experiments show that EMLight achieves accurate illumination estimation and the generated relighting in 3D object embedding exhibits superior plausibility and fidelity as compared with state-of-the-art methods.

Friday 20 October 2023

523) [2017] Learning to Predict Indoor Illumination from a Single Image
Learning to Predict Indoor Illumination from a Single Image
Marc-André GardnerKalyan SunkavalliErsin YumerXiaohui ShenEmiliano GambarettoChristian GagnéJean-François Lalonde
We propose an automatic method to infer high dynamic range illumination from a single, limited field-of-view, low dynamic range photograph of an indoor scene. In contrast to previous work that relies on specialized image capture, user input, and/or simple scene models, we train an end-to-end deep neural network that directly regresses a limited field-of-view photo to HDR illumination, without strong assumptions on scene geometry, material properties, or lighting. We show that this can be accomplished in a three step process: 1) we train a robust lighting classifier to automatically annotate the location of light sources in a large dataset of LDR environment maps, 2) we use these annotations to train a deep neural network that predicts the location of lights in a scene from a single limited field-of-view photo, and 3) we fine-tune this network using a small dataset of HDR environment maps to predict light intensities. This allows us to automatically recover high-quality HDR illumination estimates that significantly outperform previous state-of-the-art methods. Consequently, using our illumination estimates for applications like 3D object insertion, we can achieve results that are photo-realistic, which is validated via a perceptual user study.

Friday 13 October 2023

522) [2023] Local-to-Global Panorama Inpainting for Locale-Aware Indoor Lighting Prediction
Local-to-Global Panorama Inpainting for Locale-Aware Indoor Lighting Prediction
Jiayang BaiZhen HeShan YangJie GuoZhenyu ChenYan ZhangYanwen Guo
Predicting panoramic indoor lighting from a single perspective image is a fundamental but highly ill-posed problem in computer vision and graphics. To achieve locale-aware and robust prediction, this problem can be decomposed into three sub-tasks: depth-based image warping, panorama inpainting and high-dynamic-range (HDR) reconstruction, among which the success of panorama inpainting plays a key role. Recent methods mostly rely on convolutional neural networks (CNNs) to fill the missing contents in the warped panorama. However, they usually achieve suboptimal performance since the missing contents occupy a very large portion in the panoramic space while CNNs are plagued by limited receptive fields. The spatially-varying distortion in the spherical signals further increases the difficulty for conventional CNNs. To address these issues, we propose a local-to-global strategy for large-scale panorama inpainting. In our method, a depth-guided local inpainting is first applied on the warped panorama to fill small but dense holes. Then, a transformer-based network, dubbed PanoTransformer, is designed to hallucinate reasonable global structures in the large holes. To avoid distortion, we further employ cubemap projection in our design of PanoTransformer. The high-quality panorama recovered at any locale helps us to capture spatially-varying indoor illumination with physically-plausible global structures and fine details.
521) [2023] EverLight: Indoor-Outdoor Editable HDR Lighting Estimation
EverLight: Indoor-Outdoor Editable HDR Lighting Estimation
Mohammad Reza Karimi DastjerdiJonathan EisenmannYannick Hold-GeoffroyJean-François Lalonde
Because of the diversity in lighting environments, existing illumination estimation techniques have been designed explicitly on indoor or outdoor environments. Methods have focused specifically on capturing accurate energy (e.g., through parametric lighting models), which emphasizes shading and strong cast shadows; or producing plausible texture (e.g., with GANs), which prioritizes plausible reflections. Approaches which provide editable lighting capabilities have been proposed, but these tend to be with simplified lighting models, offering limited realism. In this work, we propose to bridge the gap between these recent trends in the literature, and propose a method which combines a parametric light model with 360{\deg} panoramas, ready to use as HDRI in rendering engines. We leverage recent advances in GAN-based LDR panorama extrapolation from a regular image, which we extend to HDR using parametric spherical gaussians. To achieve this, we introduce a novel lighting co-modulation method that injects lighting-related features throughout the generator, tightly coupling the original or edited scene illumination within the panorama generation process. In our representation, users can easily edit light direction, intensity, number, etc. to impact shading while providing rich, complex reflections while seamlessly blending with the edits. Furthermore, our method encompasses indoor and outdoor environments, demonstrating state-of-the-art results even when compared to domain-specific methods.
520) [2023] Spatiotemporally Consistent HDR Indoor Lighting Estimation
Spatiotemporally Consistent HDR Indoor Lighting Estimation
Zhengqin LiLi YuMikhail OkunevManmohan ChandrakerZhao Dong
We propose a physically-motivated deep learning framework to solve a general version of the challenging indoor lighting estimation problem. Given a single LDR image with a depth map, our method predicts spatially consistent lighting at any given image position. Particularly, when the input is an LDR video sequence, our framework not only progressively refines the lighting prediction as it sees more regions, but also preserves temporal consistency by keeping the refinement smooth. Our framework reconstructs a spherical Gaussian lighting volume (SGLV) through a tailored 3D encoder-decoder, which enables spatially consistent lighting prediction through volume ray tracing, a hybrid blending network for detailed environment maps, an in-network Monte-Carlo rendering layer to enhance photorealism for virtual object insertion, and recurrent neural networks (RNN) to achieve temporally consistent lighting prediction with a video sequence as the input. For training, we significantly enhance the OpenRooms public dataset of photorealistic synthetic indoor scenes with around 360K HDR environment maps of much higher resolution and 38K video sequences, rendered with GPU-based path tracing. Experiments show that our framework achieves lighting prediction with higher quality compared to state-of-the-art single-image or video-based methods, leading to photorealistic AR applications such as object insertion.
519) [2022] *** StyleLight: HDR Panorama Generation for Lighting Estimation and Editing
*** StyleLight: HDR Panorama Generation for Lighting Estimation and Editing
Guangcong WangYinuo YangChen Change LoyZiwei Liu
We present a new lighting estimation and editing framework to generate high-dynamic-range (HDR) indoor panorama lighting from a single limited field-of-view (LFOV) image captured by low-dynamic-range (LDR) cameras. Existing lighting estimation methods either directly regress lighting representation parameters or decompose this problem into LFOV-to-panorama and LDR-to-HDR lighting generation sub-tasks. However, due to the partial observation, the high-dynamic-range lighting, and the intrinsic ambiguity of a scene, lighting estimation remains a challenging task. To tackle this problem, we propose a coupled dual-StyleGAN panorama synthesis network (StyleLight) that integrates LDR and HDR panorama synthesis into a unified framework. The LDR and HDR panorama synthesis share a similar generator but have separate discriminators. During inference, given an LDR LFOV image, we propose a focal-masked GAN inversion method to find its latent code by the LDR panorama synthesis branch and then synthesize the HDR panorama by the HDR panorama synthesis branch. StyleLight takes LFOV-to-panorama and LDR-to-HDR lighting generation into a unified framework and thus greatly improves lighting estimation. Extensive experiments demonstrate that our framework achieves superior performance over state-of-the-art methods on indoor lighting estimation. Notably, StyleLight also enables intuitive lighting editing on indoor HDR panoramas, which is suitable for real-world applications. Code is available at https://style-light.github.io.
518) [2022] Editable Indoor Lighting Estimation
Editable Indoor Lighting Estimation
Henrique WeberMathieu GaronJean-François Lalonde
We present a method for estimating lighting from a single perspective image of an indoor scene. Previous methods for predicting indoor illumination usually focus on either simple, parametric lighting that lack realism, or on richer representations that are difficult or even impossible to understand or modify after prediction. We propose a pipeline that estimates a parametric light that is easy to edit and allows renderings with strong shadows, alongside with a non-parametric texture with high-frequency information necessary for realistic rendering of specular objects. Once estimated, the predictions obtained with our model are interpretable and can easily be modified by an artist/user with a few mouse clicks. Quantitative and qualitative results show that our approach makes indoor lighting estimation easier to handle by a casual user, while still producing competitive results.

Monday 24 July 2023

517) [2023] Make-It-3D: High-Fidelity 3D Creation from A Single Image with Diffusion Prior
Make-It-3D: High-Fidelity 3D Creation from A Single Image with Diffusion Prior
Junshu TangTengfei WangBo ZhangTing ZhangRan YiLizhuang MaDong Chen
In this work, we investigate the problem of creating high-fidelity 3D content from only a single image. This is inherently challenging: it essentially involves estimating the underlying 3D geometry while simultaneously hallucinating unseen textures. To address this challenge, we leverage prior knowledge from a well-trained 2D diffusion model to act as 3D-aware supervision for 3D creation. Our approach, Make-It-3D, employs a two-stage optimization pipeline: the first stage optimizes a neural radiance field by incorporating constraints from the reference image at the frontal view and diffusion prior at novel views; the second stage transforms the coarse model into textured point clouds and further elevates the realism with diffusion prior while leveraging the high-quality textures from the reference image. Extensive experiments demonstrate that our method outperforms prior works by a large margin, resulting in faithful reconstructions and impressive visual quality. Our method presents the first attempt to achieve high-quality 3D creation from a single image for general objects and enables various applications such as text-to-3D creation and texture editing.

Tuesday 18 July 2023

516) [2023] Stable Target Field for Reduced Variance Score Estimation in Diffusion Models
Stable Target Field for Reduced Variance Score Estimation in Diffusion Models
Yilun XuShangyuan TongTommi Jaakkola
Diffusion models generate samples by reversing a fixed forward diffusion process. Despite already providing impressive empirical results, these diffusion models algorithms can be further improved by reducing the variance of the training targets in their denoising score-matching objective. We argue that the source of such variance lies in the handling of intermediate noise-variance scales, where multiple modes in the data affect the direction of reverse paths. We propose to remedy the problem by incorporating a reference batch which we use to calculate weighted conditional scores as more stable training targets. We show that the procedure indeed helps in the challenging intermediate regime by reducing (the trace of) the covariance of training targets. The new stable targets can be seen as trading bias for reduced variance, where the bias vanishes with increasing reference batch size. Empirically, we show that the new objective improves the image quality, stability, and training speed of various popular diffusion models across datasets with both general ODE and SDE solvers. When used in combination with EDM, our method yields a current SOTA FID of 1.90 with 35 network evaluations on the unconditional CIFAR-10 generation task. The code is available at https://github.com/Newbeeer/stf

Saturday 08 July 2023

515) [2022] PointCLIP V2: Adapting CLIP for Powerful 3D Open-world Learning
PointCLIP V2: Adapting CLIP for Powerful 3D Open-world Learning
Xiangyang ZhuRenrui ZhangBowei HeZiyao ZengShanghang ZhangPeng Gao
Contrastive Language-Image Pre-training (CLIP) has shown promising open-world performance on 2D image tasks, while its transferred capacity on 3D point clouds, i.e., PointCLIP, is still far from satisfactory. In this work, we propose PointCLIP V2, a powerful 3D open-world learner, to fully unleash the potential of CLIP on 3D point cloud data. First, we introduce a realistic shape projection module to generate more realistic depth maps for CLIP's visual encoder, which is quite efficient and narrows the domain gap between projected point clouds with natural images. Second, we leverage large-scale language models to automatically design a more descriptive 3D-semantic prompt for CLIP's textual encoder, instead of the previous hand-crafted one. Without introducing any training in 3D domains, our approach significantly surpasses PointCLIP by +42.90%, +40.44%, and +28.75% accuracy on three datasets for zero-shot 3D classification. Furthermore, PointCLIP V2 can be extended to few-shot classification, zero-shot part segmentation, and zero-shot 3D object detection in a simple manner, demonstrating our superior generalization ability for 3D open-world learning. Code will be available at https://github.com/yangyangyang127/PointCLIP_V2.
514) [2023] Text2Tex: Text-driven Texture Synthesis via Diffusion Models
Text2Tex: Text-driven Texture Synthesis via Diffusion Models
Dave Zhenyu ChenYawar SiddiquiHsin-Ying LeeSergey TulyakovMatthias Nießner
We present Text2Tex, a novel method for generating high-quality textures for 3D meshes from the given text prompts. Our method incorporates inpainting into a pre-trained depth-aware image diffusion model to progressively synthesize high resolution partial textures from multiple viewpoints. To avoid accumulating inconsistent and stretched artifacts across views, we dynamically segment the rendered view into a generation mask, which represents the generation status of each visible texel. This partitioned view representation guides the depth-aware inpainting model to generate and update partial textures for the corresponding regions. Furthermore, we propose an automatic view sequence generation scheme to determine the next best view for updating the partial texture. Extensive experiments demonstrate that our method significantly outperforms the existing text-driven approaches and GAN-based methods.
513) [2023] Bridging the Domain Gap: Self-Supervised 3D Scene Understanding with Foundation Models
Bridging the Domain Gap: Self-Supervised 3D Scene Understanding with Foundation Models
Zhimin ChenBing Li
Foundation models have made significant strides in 2D and language tasks such as image segmentation, object detection, and visual-language understanding. Nevertheless, their potential to enhance 3D scene representation learning remains largely untapped due to the domain gap. In this paper, we propose an innovative methodology Bridge3D to address this gap, pre-training 3D models using features, semantic masks, and captions sourced from foundation models. Specifically, our approach utilizes semantic masks from these models to guide the masking and reconstruction process in the masked autoencoder. This strategy enables the network to concentrate more on foreground objects, thereby enhancing 3D representation learning. Additionally, we bridge the 3D-text gap at the scene level by harnessing image captioning foundation models. To further facilitate knowledge distillation from well-learned 2D and text representations to the 3D model, we introduce a novel method that employs foundation models to generate highly accurate object-level masks and semantic text information at the object level. Our approach notably outshines state-of-the-art methods in 3D object detection and semantic segmentation tasks. For instance, on the ScanNet dataset, our method surpasses the previous state-of-the-art method, PiMAE, by a significant margin of 5.3%.

Monday 03 July 2023

512) [2022] UniT3D: A Unified Transformer for 3D Dense Captioning and Visual Grounding
UniT3D: A Unified Transformer for 3D Dense Captioning and Visual Grounding
Dave Zhenyu ChenRonghang HuXinlei ChenMatthias NießnerAngel X. Chang
Performing 3D dense captioning and visual grounding requires a common and shared understanding of the underlying multimodal relationships. However, despite some previous attempts on connecting these two related tasks with highly task-specific neural modules, it remains understudied how to explicitly depict their shared nature to learn them simultaneously. In this work, we propose UniT3D, a simple yet effective fully unified transformer-based architecture for jointly solving 3D visual grounding and dense captioning. UniT3D enables learning a strong multimodal representation across the two tasks through a supervised joint pre-training scheme with bidirectional and seq-to-seq objectives. With a generic architecture design, UniT3D allows expanding the pre-training scope to more various training sources such as the synthesized data from 2D prior knowledge to benefit 3D vision-language tasks. Extensive experiments and analysis demonstrate that UniT3D obtains significant gains for 3D dense captioning and visual grounding.
511) [2023] Text2Room: Extracting Textured 3D Meshes from 2D Text-to-Image Models
Text2Room: Extracting Textured 3D Meshes from 2D Text-to-Image Models
Lukas HölleinAng CaoAndrew OwensJustin JohnsonMatthias Nießner
We present Text2Room, a method for generating room-scale textured 3D meshes from a given text prompt as input. To this end, we leverage pre-trained 2D text-to-image models to synthesize a sequence of images from different poses. In order to lift these outputs into a consistent 3D scene representation, we combine monocular depth estimation with a text-conditioned inpainting model. The core idea of our approach is a tailored viewpoint selection such that the content of each image can be fused into a seamless, textured 3D mesh. More specifically, we propose a continuous alignment strategy that iteratively fuses scene frames with the existing geometry to create a seamless mesh. Unlike existing works that focus on generating single objects or zoom-out trajectories from text, our method generates complete 3D scenes with multiple objects and explicit 3D geometry. We evaluate our approach using qualitative and quantitative metrics, demonstrating it as the first method to generate room-scale 3D geometry with compelling textures from only text as input.
510) [2023] 3DShape2VecSet: A 3D Shape Representation for Neural Fields and Generative Diffusion Models
3DShape2VecSet: A 3D Shape Representation for Neural Fields and Generative Diffusion Models
Biao ZhangJiapeng TangMatthias NiessnerPeter Wonka
We introduce 3DShape2VecSet, a novel shape representation for neural fields designed for generative diffusion models. Our shape representation can encode 3D shapes given as surface models or point clouds, and represents them as neural fields. The concept of neural fields has previously been combined with a global latent vector, a regular grid of latent vectors, or an irregular grid of latent vectors. Our new representation encodes neural fields on top of a set of vectors. We draw from multiple concepts, such as the radial basis function representation and the cross attention and self-attention function, to design a learnable representation that is especially suitable for processing with transformers. Our results show improved performance in 3D shape encoding and 3D shape generative modeling tasks. We demonstrate a wide variety of generative applications: unconditioned generation, category-conditioned generation, text-conditioned generation, point-cloud completion, and image-conditioned generation.
509) [2023] ULIP-2: Towards Scalable Multimodal Pre-training for 3D Understanding
ULIP-2: Towards Scalable Multimodal Pre-training for 3D Understanding
Le XueNing YuShu ZhangJunnan LiRoberto Martín-MartínJiajun WuCaiming XiongRan XuJuan Carlos NieblesSilvio Savarese
Recent advancements in multimodal pre-training methods have shown promising efficacy in 3D representation learning by aligning multimodal features across 3D shapes, their 2D counterparts, and language descriptions. However, the methods used by existing multimodal pre-training frameworks to gather multimodal data for 3D applications lack scalability and comprehensiveness, potentially constraining the full potential of multimodal learning. The main bottleneck lies in the language modality's scalability and comprehensiveness. To address this, we introduce ULIP-2, a tri-modal pre-training framework that leverages state-of-the-art large multimodal models to automatically generate holistic language counterparts for 3D objects. It does not require any 3D annotations, and is therefore scalable to large datasets. We conduct experiments on two large-scale 3D datasets, Objaverse and ShapeNet, and augment them with tri-modal datasets of 3D point clouds, images, and language for training ULIP-2. ULIP-2 achieves significant improvements on downstream zero-shot classification on ModelNet40 (74.0% in top-1 accuracy); on the real-world ScanObjectNN benchmark, it obtains 91.5% in overall accuracy with only 1.4 million parameters, signifying a breakthrough in scalable multimodal 3D representation learning without human 3D annotations. The code, along with the generated tri-modal datasets, can be found at https://github.com/salesforce/ULIP.
508) [2023] OpenShape: Scaling Up 3D Shape Representation Towards Open-World Understanding
OpenShape: Scaling Up 3D Shape Representation Towards Open-World Understanding
Minghua LiuRuoxi ShiKaiming KuangYinhao ZhuXuanlin LiShizhong HanHong CaiFatih PorikliHao Su
We introduce OpenShape, a method for learning multi-modal joint representations of text, image, and point clouds. We adopt the commonly used multi-modal contrastive learning framework for representation alignment, but with a specific focus on scaling up 3D representations to enable open-world 3D shape understanding. To achieve this, we scale up training data by ensembling multiple 3D datasets and propose several strategies to automatically filter and enrich noisy text descriptions. We also explore and compare strategies for scaling 3D backbone networks and introduce a novel hard negative mining module for more efficient training. We evaluate OpenShape on zero-shot 3D classification benchmarks and demonstrate its superior capabilities for open-world recognition. Specifically, OpenShape achieves a zero-shot accuracy of 46.8% on the 1,156-category Objaverse-LVIS benchmark, compared to less than 10% for existing methods. OpenShape also achieves an accuracy of 85.3% on ModelNet40, outperforming previous zero-shot baseline methods by 20% and performing on par with some fully-supervised methods. Furthermore, we show that our learned embeddings encode a wide range of visual and semantic concepts (e.g., subcategories, color, shape, style) and facilitate fine-grained text-3D and image-3D interactions. Due to their alignment with CLIP embeddings, our learned shape representations can also be integrated with off-the-shelf CLIP-based models for various applications, such as point cloud captioning and point cloud-conditioned image generation.
507) [2023] ULIP: Learning a Unified Representation of Language, Images, and Point Clouds for 3D Understanding
ULIP: Learning a Unified Representation of Language, Images, and Point Clouds for 3D Understanding
Le XueMingfei GaoChen XingRoberto Martín-MartínJiajun WuCaiming XiongRan XuJuan Carlos NieblesSilvio Savarese
The recognition capabilities of current state-of-the-art 3D models are limited by datasets with a small number of annotated data and a pre-defined set of categories. In its 2D counterpart, recent advances have shown that similar problems can be significantly alleviated by employing knowledge from other modalities, such as language. Inspired by this, leveraging multimodal information for 3D modality could be promising to improve 3D understanding under the restricted data regime, but this line of research is not well studied. Therefore, we introduce ULIP to learn a unified representation of images, texts, and 3D point clouds by pre-training with object triplets from the three modalities. To overcome the shortage of training triplets, ULIP leverages a pre-trained vision-language model that has already learned a common visual and textual space by training with massive image-text pairs. Then, ULIP learns a 3D representation space aligned with the common image-text space, using a small number of automatically synthesized triplets. ULIP is agnostic to 3D backbone networks and can easily be integrated into any 3D architecture. Experiments show that ULIP effectively improves the performance of multiple recent 3D backbones by simply pre-training them on ShapeNet55 using our framework, achieving state-of-the-art performance in both standard 3D classification and zero-shot 3D classification on ModelNet40 and ScanObjectNN. ULIP also improves the performance of PointMLP by around 3% in 3D classification on ScanObjectNN, and outperforms PointCLIP by 28.8% on top-1 accuracy for zero-shot 3D classification on ModelNet40. Our code and pre-trained models are released at https://github.com/salesforce/ULIP.
506) [2023] One-2-3-45: Any Single Image to 3D Mesh in 45 Seconds without Per-Shape Optimization
One-2-3-45: Any Single Image to 3D Mesh in 45 Seconds without Per-Shape Optimization
Minghua LiuChao XuHaian JinLinghao ChenMukund Varma TZexiang XuHao Su
Single image 3D reconstruction is an important but challenging task that requires extensive knowledge of our natural world. Many existing methods solve this problem by optimizing a neural radiance field under the guidance of 2D diffusion models but suffer from lengthy optimization time, 3D inconsistency results, and poor geometry. In this work, we propose a novel method that takes a single image of any object as input and generates a full 360-degree 3D textured mesh in a single feed-forward pass. Given a single image, we first use a view-conditioned 2D diffusion model, Zero123, to generate multi-view images for the input view, and then aim to lift them up to 3D space. Since traditional reconstruction methods struggle with inconsistent multi-view predictions, we build our 3D reconstruction module upon an SDF-based generalizable neural surface reconstruction method and propose several critical training strategies to enable the reconstruction of 360-degree meshes. Without costly optimizations, our method reconstructs 3D shapes in significantly less time than existing methods. Moreover, our method favors better geometry, generates more 3D consistent results, and adheres more closely to the input image. We evaluate our approach on both synthetic data and in-the-wild images and demonstrate its superiority in terms of both mesh quality and runtime. In addition, our approach can seamlessly support the text-to-3D task by integrating with off-the-shelf text-to-image diffusion models.
505) [2023] Zero-1-to-3: Zero-shot One Image to 3D Object
Zero-1-to-3: Zero-shot One Image to 3D Object
Ruoshi LiuRundi WuBasile Van HoorickPavel TokmakovSergey ZakharovCarl Vondrick
We introduce Zero-1-to-3, a framework for changing the camera viewpoint of an object given just a single RGB image. To perform novel view synthesis in this under-constrained setting, we capitalize on the geometric priors that large-scale diffusion models learn about natural images. Our conditional diffusion model uses a synthetic dataset to learn controls of the relative camera viewpoint, which allow new images to be generated of the same object under a specified camera transformation. Even though it is trained on a synthetic dataset, our model retains a strong zero-shot generalization ability to out-of-distribution datasets as well as in-the-wild images, including impressionist paintings. Our viewpoint-conditioned diffusion approach can further be used for the task of 3D reconstruction from a single image. Qualitative and quantitative experiments show that our method significantly outperforms state-of-the-art single-view 3D reconstruction and novel view synthesis models by leveraging Internet-scale pre-training.

Thursday 09 March 2023

504) [2023] Reduce, Reuse, Recycle: Compositional Generation with Energy-Based Diffusion Models and MCMC
Reduce, Reuse, Recycle: Compositional Generation with Energy-Based Diffusion Models and MCMC
Yilun DuConor DurkanRobin StrudelJoshua B. TenenbaumSander DielemanRob FergusJascha Sohl-DicksteinArnaud DoucetWill Grathwohl
Since their introduction, diffusion models have quickly become the prevailing approach to generative modeling in many domains. They can be interpreted as learning the gradients of a time-varying sequence of log-probability density functions. This interpretation has motivated classifier-based and classifier-free guidance as methods for post-hoc control of diffusion models. In this work, we build upon these ideas using the score-based interpretation of diffusion models, and explore alternative ways to condition, modify, and reuse diffusion models for tasks involving compositional generation and guidance. In particular, we investigate why certain types of composition fail using current techniques and present a number of solutions. We conclude that the sampler (not the model) is responsible for this failure and propose new samplers, inspired by MCMC, which enable successful compositional generation. Further, we propose an energy-based parameterization of diffusion models which enables the use of new compositional operators and more sophisticated, Metropolis-corrected samplers. Intriguingly we find these samplers lead to notable improvements in compositional generation across a wide set of problems such as classifier-guided ImageNet modeling and compositional text-to-image generation.

Thursday 02 March 2023

503) [2023] RealFusion: 360{\deg} Reconstruction of Any Object from a Single Image
RealFusion: 360{\deg} Reconstruction of Any Object from a Single Image
Luke Melas-KyriaziChristian RupprechtIro LainaAndrea Vedaldi
We consider the problem of reconstructing a full 360{\deg} photographic model of an object from a single image of it. We do so by fitting a neural radiance field to the image, but find this problem to be severely ill-posed. We thus take an off-the-self conditional image generator based on diffusion and engineer a prompt that encourages it to "dream up" novel views of the object. Using an approach inspired by DreamFields and DreamFusion, we fuse the given input view, the conditional prior, and other regularizers in a final, consistent reconstruction. We demonstrate state-of-the-art reconstruction results on benchmark images when compared to prior methods for monocular 3D reconstruction of objects. Qualitatively, our reconstructions provide a faithful match of the input view and a plausible extrapolation of its appearance and 3D shape, including to the side of the object not visible in the image.
502)

Thursday 02 February 2023

501) [2023] Attend-and-Excite: Attention-Based Semantic Guidance for Text-to-Image Diffusion Models
Attend-and-Excite: Attention-Based Semantic Guidance for Text-to-Image Diffusion Models
Hila CheferYuval AlalufYael VinkerLior WolfDaniel Cohen-Or
Recent text-to-image generative models have demonstrated an unparalleled ability to generate diverse and creative imagery guided by a target text prompt. While revolutionary, current state-of-the-art diffusion models may still fail in generating images that fully convey the semantics in the given text prompt. We analyze the publicly available Stable Diffusion model and assess the existence of catastrophic neglect, where the model fails to generate one or more of the subjects from the input prompt. Moreover, we find that in some cases the model also fails to correctly bind attributes (e.g., colors) to their corresponding subjects. To help mitigate these failure cases, we introduce the concept of Generative Semantic Nursing (GSN), where we seek to intervene in the generative process on the fly during inference time to improve the faithfulness of the generated images. Using an attention-based formulation of GSN, dubbed Attend-and-Excite, we guide the model to refine the cross-attention units to attend to all subject tokens in the text prompt and strengthen - or excite - their activations, encouraging the model to generate all subjects described in the text prompt. We compare our approach to alternative approaches and demonstrate that it conveys the desired concepts more faithfully across a range of text prompts.
teng

Wednesday 01 February 2023

500) [2023] Zorro: the masked multimodal transformer
Zorro: the masked multimodal transformer
Adrià RecasensJason LinJoāo CarreiraDrew JaegleLuyu WangJean-baptiste AlayracPauline LucAntoine MiechLucas SmairaRoss HemsleyAndrew Zisserman
Attention-based models are appealing for multimodal processing because inputs from multiple modalities can be concatenated and fed to a single backbone network - thus requiring very little fusion engineering. The resulting representations are however fully entangled throughout the network, which may not always be desirable: in learning, contrastive audio-visual self-supervised learning requires independent audio and visual features to operate, otherwise learning collapses; in inference, evaluation of audio-visual models should be possible on benchmarks having just audio or just video. In this paper, we introduce Zorro, a technique that uses masks to control how inputs from each modality are routed inside Transformers, keeping some parts of the representation modality-pure. We apply this technique to three popular transformer-based architectures (ViT, Swin and HiP) and show that with contrastive pre-training Zorro achieves state-of-the-art results on most relevant benchmarks for multimodal tasks (AudioSet and VGGSound). Furthermore, the resulting models are able to perform unimodal inference on both video and audio benchmarks such as Kinetics-400 or ESC-50.
star
ta
499) [2021] Multi-Scale Vision Longformer: A New Vision Transformer for High-Resolution Image Encoding
Multi-Scale Vision Longformer: A New Vision Transformer for High-Resolution Image Encoding
Pengchuan ZhangXiyang DaiJianwei YangBin XiaoLu YuanLei ZhangJianfeng Gao
This paper presents a new Vision Transformer (ViT) architecture Multi-Scale Vision Longformer, which significantly enhances the ViT of \cite{dosovitskiy2020image} for encoding high-resolution images using two techniques. The first is the multi-scale model structure, which provides image encodings at multiple scales with manageable computational cost. The second is the attention mechanism of vision Longformer, which is a variant of Longformer \cite{beltagy2020longformer}, originally developed for natural language processing, and achieves a linear complexity w.r.t. the number of input tokens. A comprehensive empirical study shows that the new ViT significantly outperforms several strong baselines, including the existing ViT models and their ResNet counterparts, and the Pyramid Vision Transformer from a concurrent work \cite{wang2021pyramid}, on a range of vision tasks, including image classification, object detection, and segmentation. The models and source code are released at \url{https://github.com/microsoft/vision-longformer}.
ta
498) [2022] GPViT: A High Resolution Non-Hierarchical Vision Transformer with Group Propagation
GPViT: A High Resolution Non-Hierarchical Vision Transformer with Group Propagation
Chenhongyi YangJiarui XuShalini De MelloElliot J. CrowleyXiaolong Wang
We present the Group Propagation Vision Transformer (GPViT): a novel nonhierarchical (i.e. non-pyramidal) transformer model designed for general visual recognition with high-resolution features. High-resolution features (or tokens) are a natural fit for tasks that involve perceiving fine-grained details such as detection and segmentation, but exchanging global information between these features is expensive in memory and computation because of the way self-attention scales. We provide a highly efficient alternative Group Propagation Block (GP Block) to exchange global information. In each GP Block, features are first grouped together by a fixed number of learnable group tokens; we then perform Group Propagation where global information is exchanged between the grouped features; finally, global information in the updated grouped features is returned back to the image features through a transformer decoder. We evaluate GPViT on a variety of visual recognition tasks including image classification, semantic segmentation, object detection, and instance segmentation. Our method achieves significant performance gains over previous works across all tasks, especially on tasks that require high-resolution outputs, for example, our GPViT-L3 outperforms Swin Transformer-B by 2.0 mIoU on ADE20K semantic segmentation with only half as many parameters. Code and pre-trained models are available at https://github.com/ChenhongyiYang/GPViT .
ta
497) [2022] StyleNAT: Giving Each Head a New Perspective
StyleNAT: Giving Each Head a New Perspective
Steven WaltonAli HassaniXingqian XuZhangyang WangHumphrey Shi
Image generation has been a long sought-after but challenging task, and performing the generation task in an efficient manner is similarly difficult. Often researchers attempt to create a "one size fits all" generator, where there are few differences in the parameter space for drastically different datasets. Herein, we present a new transformer-based framework, dubbed StyleNAT, targeting high-quality image generation with superior efficiency and flexibility. At the core of our model, is a carefully designed framework that partitions attention heads to capture local and global information, which is achieved through using Neighborhood Attention (NA). With different heads able to pay attention to varying receptive fields, the model is able to better combine this information, and adapt, in a highly flexible manner, to the data at hand. StyleNAT attains a new SOTA FID score on FFHQ-256 with 2.046, beating prior arts with convolutional models such as StyleGAN-XL and transformers such as HIT and StyleSwin, and a new transformer SOTA on FFHQ-1024 with an FID score of 4.174. These results show a 6.4% improvement on FFHQ-256 scores when compared to StyleGAN-XL with a 28% reduction in the number of parameters and 56% improvement in sampling throughput. Code and models will be open-sourced at https://github.com/SHI-Labs/StyleNAT .
ta

Monday 30 January 2023

496) [2022] RegionViT: Regional-to-Local Attention for Vision Transformers
RegionViT: Regional-to-Local Attention for Vision Transformers
Chun-Fu ChenRameswar PandaQuanfu Fan
Vision transformer (ViT) has recently shown its strong capability in achieving comparable results to convolutional neural networks (CNNs) on image classification. However, vanilla ViT simply inherits the same architecture from the natural language processing directly, which is often not optimized for vision applications. Motivated by this, in this paper, we propose a new architecture that adopts the pyramid structure and employ a novel regional-to-local attention rather than global self-attention in vision transformers. More specifically, our model first generates regional tokens and local tokens from an image with different patch sizes, where each regional token is associated with a set of local tokens based on the spatial location. The regional-to-local attention includes two steps: first, the regional self-attention extract global information among all regional tokens and then the local self-attention exchanges the information among one regional token and the associated local tokens via self-attention. Therefore, even though local self-attention confines the scope in a local region but it can still receive global information. Extensive experiments on four vision tasks, including image classification, object and keypoint detection, semantics segmentation and action recognition, show that our approach outperforms or is on par with state-of-the-art ViT variants including many concurrent works. Our source codes and models are available at https://github.com/ibm/regionvit.
ta

Sunday 29 January 2023

495) [2022] Neighborhood Attention Transformer
Neighborhood Attention Transformer
Ali HassaniSteven WaltonJiachen LiShen LiHumphrey Shi
We present Neighborhood Attention (NA), the first efficient and scalable sliding-window attention mechanism for vision. NA is a pixel-wise operation, localizing self attention (SA) to the nearest neighboring pixels, and therefore enjoys a linear time and space complexity compared to the quadratic complexity of SA. The sliding-window pattern allows NA's receptive field to grow without needing extra pixel shifts, and preserves translational equivariance, unlike Swin Transformer's Window Self Attention (WSA). We develop NATTEN (Neighborhood Attention Extension), a Python package with efficient C++ and CUDA kernels, which allows NA to run up to 40% faster than Swin's WSA while using up to 25% less memory. We further present Neighborhood Attention Transformer (NAT), a new hierarchical transformer design based on NA that boosts image classification and downstream vision performance. Experimental results on NAT are competitive; NAT-Tiny reaches 83.2% top-1 accuracy on ImageNet, 51.4% mAP on MS-COCO and 48.4% mIoU on ADE20K, which is 1.9% ImageNet accuracy, 1.0% COCO mAP, and 2.6% ADE20K mIoU improvement over a Swin model with similar size. To support more research based on sliding-window attention, we open source our project and release our checkpoints at: https://github.com/SHI-Labs/Neighborhood-Attention-Transformer .
ta
494) [2022] HiP: Hierarchical Perceiver
HiP: Hierarchical Perceiver
Joao CarreiraSkanda KoppulaDaniel ZoranAdria RecasensCatalin IonescuOlivier HenaffEvan ShelhamerRelja ArandjelovicMatt BotvinickOriol VinyalsKaren SimonyanAndrew ZissermanAndrew Jaegle
General perception systems such as Perceivers can process arbitrary modalities in any combination and are able to handle up to a few hundred thousand inputs. They achieve this generality by using exclusively global attention operations. This however hinders them from scaling up to the inputs sizes required to process raw high-resolution images or video. In this paper, we show that some degree of locality can be introduced back into these models, greatly improving their efficiency while preserving their generality. To scale them further, we introduce a self-supervised approach that enables learning dense low-dimensional positional embeddings for very large signals. We call the resulting model a Hierarchical Perceiver (HiP). In sum our contributions are: 1) scaling Perceiver-type models to raw high-resolution images and audio+video, 2) showing the feasibility of learning 1M+ positional embeddings from scratch using masked auto-encoding, 3) demonstrating competitive performance on raw data from ImageNet, AudioSet, PASCAL VOC, ModelNet40 and Kinetics datasets with the same exact, unchanged model and without specialized preprocessing or any tokenization.
ta

Thursday 26 January 2023

493) [2022] FlexiViT: One Model for All Patch Sizes
FlexiViT: One Model for All Patch Sizes
Lucas BeyerPavel IzmailovAlexander KolesnikovMathilde CaronSimon KornblithXiaohua ZhaiMatthias MindererMichael TschannenIbrahim AlabdulmohsinFilip Pavetic
Vision Transformers convert images to sequences by slicing them into patches. The size of these patches controls a speed/accuracy tradeoff, with smaller patches leading to higher accuracy at greater computational cost, but changing the patch size typically requires retraining the model. In this paper, we demonstrate that simply randomizing the patch size at training time leads to a single set of weights that performs well across a wide range of patch sizes, making it possible to tailor the model to different compute budgets at deployment time. We extensively evaluate the resulting model, which we call FlexiViT, on a wide range of tasks, including classification, image-text retrieval, open-world detection, panoptic segmentation, and semantic segmentation, concluding that it usually matches, and sometimes outperforms, standard ViT models trained at a single patch size in an otherwise identical setup. Hence, FlexiViT training is a simple drop-in improvement for ViT that makes it easy to add compute-adaptive capabilities to most models relying on a ViT backbone architecture. Code and pre-trained models are available at https://github.com/google-research/big_vision
ta

Wednesday 25 January 2023

492) [2022] EDICT: Exact Diffusion Inversion via Coupled Transformations
EDICT: Exact Diffusion Inversion via Coupled Transformations
Bram WallaceAkash GokulNikhil Naik
Finding an initial noise vector that produces an input image when fed into the diffusion process (known as inversion) is an important problem in denoising diffusion models (DDMs), with applications for real image editing. The state-of-the-art approach for real image editing with inversion uses denoising diffusion implicit models (DDIMs) to deterministically noise the image to the intermediate state along the path that the denoising would follow given the original conditioning. However, DDIM inversion for real images is unstable as it relies on local linearization assumptions, which result in the propagation of errors, leading to incorrect image reconstruction and loss of content. To alleviate these problems, we propose Exact Diffusion Inversion via Coupled Transformations (EDICT), an inversion method that draws inspiration from affine coupling layers. EDICT enables mathematically exact inversion of real and model-generated images by maintaining two coupled noise vectors which are used to invert each other in an alternating fashion. Using Stable Diffusion, a state-of-the-art latent diffusion model, we demonstrate that EDICT successfully reconstructs real images with high fidelity. On complex image datasets like MS-COCO, EDICT reconstruction significantly outperforms DDIM, improving the mean square error of reconstruction by a factor of two. Using noise vectors inverted from real images, EDICT enables a wide range of image edits--from local and global semantic edits to image stylization--while maintaining fidelity to the original image structure. EDICT requires no model training/finetuning, prompt tuning, or extra data and can be combined with any pretrained DDM. Code is available at https://github.com/salesforce/EDICT.
teng

Monday 23 January 2023

491) [2023] Laser: Latent Set Representations for 3D Generative Modeling
Laser: Latent Set Representations for 3D Generative Modeling
Pol MorenoAdam R. KosiorekHeiko StrathmannDaniel ZoranRosalia G. SchneiderBjörn WincklerLarisa MarkeevaThéophane WeberDanilo J. Rezende
NeRF provides unparalleled fidelity of novel view synthesis: rendering a 3D scene from an arbitrary viewpoint. NeRF requires training on a large number of views that fully cover a scene, which limits its applicability. While these issues can be addressed by learning a prior over scenes in various forms, previous approaches have been either applied to overly simple scenes or struggling to render unobserved parts. We introduce Laser-NV: a generative model which achieves high modelling capacity, and which is based on a set-valued latent representation modelled by normalizing flows. Similarly to previous amortized approaches, Laser-NV learns structure from multiple scenes and is capable of fast, feed-forward inference from few views. To encourage higher rendering fidelity and consistency with observed views, Laser-NV further incorporates a geometry-informed attention mechanism over the observed views. Laser-NV further produces diverse and plausible completions of occluded parts of a scene while remaining consistent with observations. Laser-NV shows state-of-the-art novel-view synthesis quality when evaluated on ShapeNet and on a novel simulated City dataset, which features high uncertainty in the unobserved regions of the scene.
star
ta
490) [2022] Novel View Synthesis with Diffusion Models
Novel View Synthesis with Diffusion Models
Daniel WatsonWilliam ChanRicardo Martin-BruallaJonathan HoAndrea TagliasacchiMohammad Norouzi
We present 3DiM, a diffusion model for 3D novel view synthesis, which is able to translate a single input view into consistent and sharp completions across many views. The core component of 3DiM is a pose-conditional image-to-image diffusion model, which takes a source view and its pose as inputs, and generates a novel view for a target pose as output. 3DiM can generate multiple views that are 3D consistent using a novel technique called stochastic conditioning. The output views are generated autoregressively, and during the generation of each novel view, one selects a random conditioning view from the set of available views at each denoising step. We demonstrate that stochastic conditioning significantly improves the 3D consistency of a na¨ıve sampler for an image-to-image diffusion model, which involves conditioning on a single fixed view. We compare 3DiM to prior work on the SRN ShapeNet dataset, demonstrating that 3DiM’s generated completions from a single view achieve much higher fidelity, while being approximately 3D consistent. We also introduce a new evaluation methodology, 3D consistency scoring, to measure the 3D consistency of a generated object by training a neural field on the model’s output views. 3DiM is geometry free, does not rely on hyper-networks or test-time optimization for novel view synthesis, and allows a single model to easily scale to a large number of scenes.
star
ta
489) [2022] Input-level Inductive Biases for 3D Reconstruction
Input-level Inductive Biases for 3D Reconstruction
Wang YifanCarl DoerschRelja ArandjelovićJoão CarreiraAndrew Zisserman
Much of the recent progress in 3D vision has been driven by the development of specialized architectures that incorporate geometrical inductive biases. In this paper we tackle 3D reconstruction using a domain agnostic architecture and study how instead to inject the same type of inductive biases directly as extra inputs to the model. This approach makes it possible to apply existing general models, such as Perceivers, on this rich domain, without the need for architectural changes, while simultaneously maintaining data efficiency of bespoke models. In particular we study how to encode cameras, projective ray incidence and epipolar geometry as model inputs, and demonstrate competitive multi-view depth estimation performance on multiple benchmarks.
star
ta
488) [2023] CroCo: Self-Supervised Pre-training for 3D Vision Tasks by Cross-View Completion
CroCo: Self-Supervised Pre-training for 3D Vision Tasks by Cross-View Completion
Philippe WeinzaepfelVincent LeroyThomas LucasRomain BrégierYohann CabonVaibhav AroraLeonid AntsfeldBoris ChidlovskiiGabriela CsurkaJérôme Revaud
Masked Image Modeling (MIM) has recently been established as a potent pre-training paradigm. A pretext task is constructed by masking patches in an input image, and this masked content is then predicted by a neural network using visible patches as sole input. This pre-training leads to state-of-the-art performance when finetuned for high-level semantic tasks, e.g. image classification and object detection. In this paper we instead seek to learn representations that transfer well to a wide variety of 3D vision and lower-level geometric downstream tasks, such as depth prediction or optical flow estimation. Inspired by MIM, we propose an unsupervised representation learning task trained from pairs of images showing the same scene from different viewpoints. More precisely, we propose the pretext task of cross-view completion where the first input image is partially masked, and this masked content has to be reconstructed from the visible content and the second image. In single-view MIM, the masked content often cannot be inferred precisely from the visible portion only, so the model learns to act as a prior influenced by high-level semantics. In contrast, this ambiguity can be resolved with cross-view completion from the second unmasked image, on the condition that the model is able to understand the spatial relationship between the two images. Our experiments show that our pretext task leads to significantly improved performance for monocular 3D vision downstream tasks such as depth estimation. In addition, our model can be directly applied to binocular downstream tasks like optical flow or relative camera pose estimation, for which we obtain competitive results without bells and whistles, i.e., using a generic architecture without any task-specific design.
star
ta
487) [2022] Seeing 3D Objects in a Single Image via Self-Supervised Static-Dynamic Disentanglement
Seeing 3D Objects in a Single Image via Self-Supervised Static-Dynamic Disentanglement
Prafull SharmaAyush TewariYilun DuSergey ZakharovRares AmbrusAdrien GaidonWilliam T. FreemanFredo DurandJoshua B. TenenbaumVincent Sitzmann
Human perception reliably identifies movable and immovable parts of 3D scenes, and completes the 3D structure of objects and background from incomplete observations. We learn this skill not via labeled examples, but simply by observing objects move. In this work, we propose an approach that observes unlabeled multi-view videos at training time and learns to map a single image observation of a complex scene, such as a street with cars, to a 3D neural scene representation that is disentangled into movable and immovable parts while plausibly completing its 3D structure. We separately parameterize movable and immovable scene parts via 2D neural ground plans. These ground plans are 2D grids of features aligned with the ground plane that can be locally decoded into 3D neural radiance fields. Our model is trained self-supervised via neural rendering. We demonstrate that the structure inherent to our disentangled 3D representation enables a variety of downstream tasks in street-scale 3D scenes using simple heuristics, such as extraction of object-centric 3D representations, novel view synthesis, instance segmentation, and 3D bounding box prediction, highlighting its value as a backbone for data-efficient 3D scene understanding models. This disentanglement further enables scene editing via object manipulation such as deletion, insertion, and rigid-body motion.
star
ta
486) [2022] MaskGIT: Masked Generative Image Transformer
MaskGIT: Masked Generative Image Transformer
Huiwen ChangHan ZhangLu JiangCe LiuWilliam T. Freeman
Generative transformers have experienced rapid popularity growth in the computer vision community in synthesizing high-fidelity and high-resolution images. The best generative transformer models so far, however, still treat an image naively as a sequence of tokens, and decode an image sequentially following the raster scan ordering (i.e. line-by-line). We find this strategy neither optimal nor efficient. This paper proposes a novel image synthesis paradigm using a bidirectional transformer decoder, which we term MaskGIT. During training, MaskGIT learns to predict randomly masked tokens by attending to tokens in all directions. At inference time, the model begins with generating all tokens of an image simultaneously, and then refines the image iteratively conditioned on the previous generation. Our experiments demonstrate that MaskGIT significantly outperforms the state-of-the-art transformer model on the ImageNet dataset, and accelerates autoregressive decoding by up to 64x. Besides, we illustrate that MaskGIT can be easily extended to various image editing tasks, such as inpainting, extrapolation, and image manipulation.
star
ta
485) [2022] Scene Representation Transformer: Geometry-Free Novel View Synthesis Through Set-Latent Scene Representations
Scene Representation Transformer: Geometry-Free Novel View Synthesis Through Set-Latent Scene Representations
Mehdi S.M. SajjadiHenning MeyerEtienne PotUrs BergmannKlaus GreffNoha RadwanSuhani VoraMario LučićDaniel DuckworthAlexey DosovitskiyJakob UszkoreitThomas FunkhouserAndrea Tagliasacchi
A classical problem in computer vision is to infer a 3D scene representation from few images that can be used to render novel views at interactive rates. Previous work focuses on reconstructing pre-defined 3D representations, e.g. textured meshes, or implicit representations, e.g. radiance fields, and often requires input images with precise camera poses and long processing times for each novel scene. In this work, we propose the Scene Representation Transformer (SRT), a method which processes posed or unposed RGB images of a new area, infers a “set-latent scene representation ”, and synthesises novel views, all in a single feed-forward pass. To calculate the scene representation, we propose a generalization of the Vision Transformer to sets of images, enabling global information integration, and hence 3D reasoning. An efficient decoder transformer parameterizes the light field by attending into the scene representation to render novel views. Learning is supervised end-to-end by minimizing a novel-view reconstruction error. We show that this method outperforms recent baselines in terms of PSNR and speed on synthetic datasets, including a new dataset created for the paper. Further, we demonstrate that SRT scales to support interactive visualization and semantic segmentation of real-world outdoor environments using Street View imagery.
star
ta
484) [2022] Exploring Vision Transformers as Diffusion Learners
Exploring Vision Transformers as Diffusion Learners
He CaoJianan WangTianhe RenXianbiao QiYihao ChenYuan YaoLei Zhang
Score-based diffusion models have captured widespread attention and funded fast progress of recent vision generative tasks. In this paper, we focus on diffusion model backbone which has been much neglected before. We systematically explore vision Transformers as diffusion learners for various generative tasks. With our improvements the performance of vanilla ViT-based backbone (IU-ViT) is boosted to be on par with traditional U-Net-based methods. We further provide a hypothesis on the implication of disentangling the generative backbone as an encoder-decoder structure and show proof-of-concept experiments verifying the effectiveness of a stronger encoder for generative tasks with ASymmetriC ENcoder Decoder (ASCEND). Our improvements achieve competitive results on CIFAR-10, CelebA, LSUN, CUB Bird and large-resolution text-to-image tasks. To the best of our knowledge, we are the first to successfully train a single diffusion model on text-to-image task beyond 64x64 resolution. We hope this will motivate people to rethink the modeling choices and the training pipelines for diffusion-based generative models.
ta
483) [2022] Kubric: A scalable dataset generator
Kubric: A scalable dataset generator
Klaus GreffFrancois BellettiLucas BeyerCarl DoerschYilun DuDaniel DuckworthDavid J. FleetDan GnanapragasamFlorian GolemoCharles HerrmannThomas KipfAbhijit KunduDmitry LagunIssam Laradji Hsueh-Ti LiuHenning MeyerYishu MiaoDerek NowrouzezahraiCengiz OztireliEtienne PotNoha RadwanDaniel RebainSara SabourMehdi S. M. SajjadiMatan SelaVincent SitzmannAustin StoneDeqing SunSuhani VoraZiyu WangTianhao WuKwang Moo YiFangcheng ZhongAndrea Tagliasacchi
Data is the driving force of machine learning, with the amount and quality of training data often being more important for the performance of a system than architecture and training details. But collecting, processing and annotating real data at scale is difficult, expensive, and frequently raises additional privacy, fairness and legal concerns. Synthetic data is a powerful tool with the potential to address these shortcomings: 1) it is cheap 2) supports rich ground-truth annotations 3) offers full control over data and 4) can circumvent or mitigate problems regarding bias, privacy and licensing. Unfortunately, software tools for effective data generation are less mature than those for architecture design and training, which leads to fragmented generation efforts. To address these problems we introduce Kubric, an open-source Python framework that interfaces with PyBullet and Blender to generate photo-realistic scenes, with rich annotations, and seamlessly scales to large jobs distributed over thousands of machines, and generating TBs of data. We demonstrate the effectiveness of Kubric by presenting a series of 13 different generated datasets for tasks ranging from studying 3D NeRF models to optical flow estimation. We release Kubric, the used assets, all of the generation code, as well as the rendered datasets for reuse and modification.
ta
482) [2022] Improved Cross-view Completion Pre-training for Stereo Matching
Improved Cross-view Completion Pre-training for Stereo Matching
Philippe WeinzaepfelVaibhav AroraYohann CabonThomas LucasRomain BrégierVincent LeroyGabriela CsurkaLeonid AntsfeldBoris ChidlovskiiJérôme Revaud
Despite impressive performance for high-level downstream tasks, self-supervised pre-training methods have not yet fully delivered on dense geometric vision tasks such as stereo matching. The application of self-supervised learning concepts, such as instance discrimination or masked image modeling, to geometric tasks is an active area of research. In this work we build on the recent cross-view completion framework: this variation of masked image modeling leverages a second view from the same scene, which is well suited for binocular downstream tasks. However, the applicability of this concept has so far been limited in at least two ways: (a) by the difficulty of collecting real-world image pairs - in practice only synthetic data had been used - and (b) by the lack of generalization of vanilla transformers to dense downstream tasks for which relative position is more meaningful than absolute position. We explore three avenues of improvement: first, we introduce a method to collect suitable real-world image pairs at large scale. Second, we experiment with relative positional embeddings and demonstrate that they enable vision transformers to perform substantially better. Third, we scale up vision transformer based cross-completion architectures, which is made possible by the use of large amounts of data. With these improvements, we show for the first time that state-of-the-art results on deep stereo matching can be reached without using any standard task-specific techniques like correlation volume, iterative estimation or multi-scale reasoning.
ta
481) [2022] RUST: Latent Neural Scene Representations from Unposed Imagery
RUST: Latent Neural Scene Representations from Unposed Imagery
Mehdi S. M. SajjadiAravindh MahendranThomas KipfEtienne PotDaniel DuckworthMario LucicKlaus Greff
Inferring the structure of 3D scenes from 2D observations is a fundamental challenge in computer vision. Recently popularized approaches based on neural scene representations have achieved tremendous impact and have been applied across a variety of applications. One of the major remaining challenges in this space is training a single model which can provide latent representations which effectively generalize beyond a single scene. Scene Representation Transformer (SRT) has shown promise in this direction, but scaling it to a larger set of diverse scenes is challenging and necessitates accurately posed ground truth data. To address this problem, we propose RUST (Really Unposed Scene representation Transformer), a pose-free approach to novel view synthesis trained on RGB images alone. Our main insight is that one can train a Pose Encoder that peeks at the target image and learns a latent pose embedding which is used by the decoder for view synthesis. We perform an empirical investigation into the learned latent pose structure and show that it allows meaningful test-time camera transformations and accurate explicit pose readouts. Perhaps surprisingly, RUST achieves similar quality as methods which have access to perfect camera pose, thereby unlocking the potential for large-scale training of amortized neural scene representations.
ta

Friday 20 January 2023

480) [2021] GANcraft: Unsupervised 3D Neural Rendering of Minecraft Worlds
GANcraft: Unsupervised 3D Neural Rendering of Minecraft Worlds
Zekun HaoArun MallyaSerge BelongieMing-Yu Liu
We present GANcraft, an unsupervised neural rendering framework for generating photorealistic images of large 3D block worlds such as those created in Minecraft. Our method takes a semantic block world as input, where each block is assigned a semantic label such as dirt, grass, or water. We represent the world as a continuous volumetric function and train our model to render view-consistent photorealistic images for a user-controlled camera. In the absence of paired ground truth real images for the block world, we devise a training technique based on pseudo-ground truth and adversarial training. This stands in contrast to prior work on neural rendering for view synthesis, which requires ground truth images to estimate scene geometry and view-dependent appearance. In addition to camera trajectory, GANcraft allows user control over both scene semantics and output style. Experimental results with comparison to strong baselines show the effectiveness of GANcraft on this novel task of photorealistic 3D block world synthesis. The project website is available at https://nvlabs.github.io/GANcraft/ .
479) [2012] Material memex: automatic material suggestions for 3D objects
Material memex: automatic material suggestions for 3D objects
Arjun JainThorsten ThormählenTobias RitschelHans-Peter Seidel
The material found on 3D objects and their parts in our everyday surroundings is highly correlated with the geometric shape of the parts and their relation to other parts of the same object. This work proposes to model this context-dependent correlation by learning it from a database containing several hundreds of objects and their materials. Given a part-based 3D object without materials, the learned model can be used to fully automatically assign plausible material parameters, including diffuse color, specularity, gloss, and transparency. Further, we propose a user interface that provides material suggestions. This user-interface can be used, for example, to refine the automatic suggestion. Once a refinement has been made, the model incorporates this information, and the automatic assignment is incrementally improved. Results are given for objects with different numbers of parts and with different topological complexity. A user study validates that our method significantly simplifies and accelerates the material assignment task compared to other approaches.
478) [2021] Realistic Image Synthesis with Configurable 3D Scene Layouts
Realistic Image Synthesis with Configurable 3D Scene Layouts
Jaebong JeongJanghun JoJingdong WangSunghyun ChoJaesik Park
Recent conditional image synthesis approaches provide high-quality synthesized images. However, it is still challenging to accurately adjust image contents such as the positions and orientations of objects, and synthesized images often have geometrically invalid contents. To provide users with rich controllability on synthesized images in the aspect of 3D geometry, we propose a novel approach to realistic-looking image synthesis based on a configurable 3D scene layout. Our approach takes a 3D scene with semantic class labels as input and trains a 3D scene painting network that synthesizes color values for the input 3D scene. With the trained painting network, realistic-looking images for the input 3D scene can be rendered and manipulated. To train the painting network without 3D color supervision, we exploit an off-the-shelf 2D semantic image synthesis method. In experiments, we show that our approach produces images with geometrically correct structures and supports geometric manipulation such as the change of the viewpoint and object poses as well as manipulation of the painting style.
477) [2015] Magic decorator: automatic material suggestion for indoor digital scenes
Magic decorator: automatic material suggestion for indoor digital scenes
Kang ChenKun XuYizhou YuTian-Yi WangShi-Min Hu
Assigning textures and materials within 3D scenes is a tedious and labor-intensive task. In this paper, we present Magic Decorator, a system that automatically generates material suggestions for 3D indoor scenes. To achieve this goal, we introduce local material rules, which describe typical material patterns for a small group of objects or parts, and global aesthetic rules, which account for the harmony among the entire set of colors in a specific scene. Both rules are obtained from collections of indoor scene images. We cast the problem of material suggestion as a combinatorial optimization considering both local material and global aesthetic rules. We have tested our system on various complex indoor scenes. A user study indicates that our system can automatically and efficiently produce a series of visually plausible material suggestions which are comparable to those produced by artists.
476) [2022] 3D Scene Painting via Semantic Image Synthesis
3D Scene Painting via Semantic Image Synthesis
Jaebong JeongJanghun JoSunghyun ChoJaesik Park
We propose a novel approach to 3D scene painting using a configurable 3D scene layout. Our approach takes a 3D scene with semantic class labels as input and trains a 3D scene painting network that synthesizes color values for the input 3D scene. We exploit an off-the-shelf 2D semantic image synthesis method to teach the 3D painting network without explicit color supervision. Experiments show that our approach produces images with geometrically correct structures and supports scene manipulation, such as the change of viewpoint, object poses, and painting style. Our approach provides rich controllability to synthesized images in the aspect of 3D geometry.
475) [2022] MaskViT: Masked Visual Pre-Training for Video Prediction
MaskViT: Masked Visual Pre-Training for Video Prediction
Agrim GuptaStephen TianYunzhi ZhangJiajun WuRoberto Martín-MartínLi Fei-Fei
The ability to predict future visual observations conditioned on past observations and motor commands can enable embodied agents to plan solutions to a variety of tasks in complex environments. This work shows that we can create good video prediction models by pre-training transformers via masked visual modeling. Our approach, named MaskViT, is based on two simple design decisions. First, for memory and training efficiency, we use two types of window attention: spatial and spatiotemporal. Second, during training, we mask a variable percentage of tokens instead of a fixed mask ratio. For inference, MaskViT generates all tokens via iterative refinement where we incrementally decrease the masking ratio following a mask scheduling function. On several datasets we demonstrate that MaskViT outperforms prior works in video prediction, is parameter efficient, and can generate high-resolution videos (256x256). Further, we demonstrate the benefits of inference speedup (up to 512x) due to iterative decoding by using MaskViT for planning on a real robot. Our work suggests that we can endow embodied agents with powerful predictive models by leveraging the general framework of masked visual modeling with minimal domain knowledge.
ta
474) [2021] Masked Autoencoders Are Scalable Vision Learners
Masked Autoencoders Are Scalable Vision Learners
Kaiming HeXinlei ChenSaining XieYanghao LiPiotr DollárRoss Girshick
This paper shows that masked autoencoders (MAE) are scalable self-supervised learners for computer vision. Our MAE approach is simple: we mask random patches of the input image and reconstruct the missing pixels. It is based on two core designs. First, we develop an asymmetric encoder-decoder architecture, with an encoder that operates only on the visible subset of patches (without mask tokens), along with a lightweight decoder that reconstructs the original image from the latent representation and mask tokens. Second, we find that masking a high proportion of the input image, e.g., 75%, yields a nontrivial and meaningful self-supervisory task. Coupling these two designs enables us to train large models efficiently and effectively: we accelerate training (by 3x or more) and improve accuracy. Our scalable approach allows for learning high-capacity models that generalize well: e.g., a vanilla ViT-Huge model achieves the best accuracy (87.8%) among methods that use only ImageNet-1K data. Transfer performance in downstream tasks outperforms supervised pre-training and shows promising scaling behavior.
ta
473) [2022] Perceiver IO: A General Architecture for Structured Inputs & Outputs
Perceiver IO: A General Architecture for Structured Inputs & Outputs
Andrew JaegleSebastian BorgeaudJean-Baptiste AlayracCarl DoerschCatalin IonescuDavid DingSkanda KoppulaDaniel ZoranAndrew BrockEvan ShelhamerOlivier J. HenaffMatthew BotvinickAndrew ZissermanOriol VinyalsJoao Carreira
A central goal of machine learning is the development of systems that can solve many problems in as many data domains as possible. Current architectures, however, cannot be applied beyond a small set of stereotyped settings, as they bake in domain & task assumptions or scale poorly to large inputs or outputs. In this work, we propose Perceiver IO, a general-purpose architecture that handles data from arbitrary settings while scaling linearly with the size of inputs and outputs. Our model augments the Perceiver with a flexible querying mechanism that enables outputs of various sizes and semantics, doing away with the need for task-specific architecture engineering. The same architecture achieves strong results on tasks spanning natural language and visual understanding, multi-task and multi-modal reasoning, and StarCraft II. As highlights, Perceiver IO outperforms a Transformer-based BERT baseline on the GLUE language benchmark despite removing input tokenization and achieves state-of-the-art performance on Sintel optical flow estimation with no explicit mechanisms for multiscale correspondence.
ta
472) [2022] Masked Autoencoders As Spatiotemporal Learners
Masked Autoencoders As Spatiotemporal Learners
Christoph FeichtenhoferHaoqi FanYanghao LiKaiming He
This paper studies a conceptually simple extension of Masked Autoencoders (MAE) to spatiotemporal representation learning from videos. We randomly mask out spacetime patches in videos and learn an autoencoder to reconstruct them in pixels. Interestingly, we show that our MAE method can learn strong representations with almost no inductive bias on spacetime (only except for patch and positional embeddings), and spacetime-agnostic random masking performs the best. We observe that the optimal masking ratio is as high as 90% (vs. 75% on images), supporting the hypothesis that this ratio is related to information redundancy of the data. A high masking ratio leads to a large speedup, e.g., > 4x in wall-clock time or even more. We report competitive results on several challenging video datasets using vanilla Vision Transformers. We observe that MAE can outperform supervised pre-training by large margins. We further report encouraging results of training on real-world, uncurated Instagram data. Our study suggests that the general framework of masked autoencoding (BERT, MAE, etc.) can be a unified methodology for representation learning with minimal domain knowledge.
ta

Wednesday 14 December 2022

471) [2022] Multi-Concept Customization of Text-to-Image Diffusion
Multi-Concept Customization of Text-to-Image Diffusion
Nupur KumariBingliang ZhangRichard ZhangEli ShechtmanJun-Yan Zhu
While generative models produce high-quality images of concepts learned from a large-scale database, a user often wishes to synthesize instantiations of their own concepts (for example, their family, pets, or items). Can we teach a model to quickly acquire a new concept, given a few examples? Furthermore, can we compose multiple new concepts together? We propose Custom Diffusion, an efficient method for augmenting existing text-to-image models. We find that only optimizing a few parameters in the text-to-image conditioning mechanism is sufficiently powerful to represent new concepts while enabling fast tuning (~6 minutes). Additionally, we can jointly train for multiple concepts or combine multiple fine-tuned models into one via closed-form constrained optimization. Our fine-tuned model generates variations of multiple, new concepts and seamlessly composes them with existing concepts in novel settings. Our method outperforms several baselines and concurrent works, regarding both qualitative and quantitative evaluations, while being memory and computationally efficient.
teng
470) [2022] Training-Free Structured Diffusion Guidance for Compositional Text-to-Image Synthesis
Training-Free Structured Diffusion Guidance for Compositional Text-to-Image Synthesis
Anonymous
We propose a training-free approach to incorporate language structured for compositional text-to-image synthesis
teng
469) [2022] Null-text Inversion for Editing Real Images using Guided Diffusion Models
Null-text Inversion for Editing Real Images using Guided Diffusion Models
Ron MokadyAmir HertzKfir AbermanYael PritchDaniel Cohen-Or
Recent text-guided diffusion models provide powerful image generation capabilities. Currently, a massive effort is given to enable the modification of these images using text only as means to offer intuitive and versatile editing. To edit a real image using these state-of-the-art tools, one must first invert the image with a meaningful text prompt into the pretrained model's domain. In this paper, we introduce an accurate inversion technique and thus facilitate an intuitive text-based modification of the image. Our proposed inversion consists of two novel key components: (i) Pivotal inversion for diffusion models. While current methods aim at mapping random noise samples to a single input image, we use a single pivotal noise vector for each timestamp and optimize around it. We demonstrate that a direct inversion is inadequate on its own, but does provide a good anchor for our optimization. (ii) NULL-text optimization, where we only modify the unconditional textual embedding that is used for classifier-free guidance, rather than the input text embedding. This allows for keeping both the model weights and the conditional embedding intact and hence enables applying prompt-based editing while avoiding the cumbersome tuning of the model's weights. Our Null-text inversion, based on the publicly available Stable Diffusion model, is extensively evaluated on a variety of images and prompt editing, showing high-fidelity editing of real images.
teng

Tuesday 06 December 2022

468) [2021] S3Net: A Single Stream Structure for Depth Guided Image Relighting
S3Net: A Single Stream Structure for Depth Guided Image Relighting
Hao-Hsiang YangWei-Ting Chenand Sy-Yen Kuo
Depth guided any-to-any image relighting aims to generate a relit image from the original image and corresponding depth maps to match the illumination setting of the given guided image and its depth map. To the best of our knowledge, this task is a new challenge that has not been addressed in the previous literature. To address this issue, we propose a deep learning-based neural Single Stream Structure network called S3Net for depth guided image relighting. This network is an encoder-decoder model. We concatenate all images and corresponding depth maps as the input and feed them into the model. The decoder part contains the attention module and the enhanced module to focus on the relighting-related regions in the guided images. Experiments performed on challenging benchmark show that the proposed model achieves the 3 rd highest SSIM in the NTIRE 2021 Depth Guided Any-to-any Relighting Challenge.
pure

Saturday 03 December 2022

467) [2020] Deep Relighting Networks for Image Light Source Manipulation
Deep Relighting Networks for Image Light Source Manipulation
Li-Wen WangWan-Chi SiuZhi-Song LiuChu-Tak LiDaniel P. K. Lun
Manipulating the light source of given images is an interesting task and useful in various applications, including photography and cinematography. Existing methods usually require additional information like the geometric structure of the scene, which may not be available for most images. In this paper, we formulate the single image relighting task and propose a novel Deep Relighting Network (DRN) with three parts: 1) scene reconversion, which aims to reveal the primary scene structure through a deep auto-encoder network, 2) shadow prior estimation, to predict light effect from the new light direction through adversarial learning, and 3) re-renderer, to combine the primary structure with the reconstructed shadow view to form the required estimation under the target light source. Experimental results show that the proposed method outperforms other possible methods, both qualitatively and quantitatively. Specifically, the proposed DRN has achieved the best PSNR in the "AIM2020 - Any to one relighting challenge" of the 2020 ECCV conference.
pure

Tuesday 01 November 2022

466) [2022] EpipolarNVS: leveraging on Epipolar geometry for single-image Novel View Synthesis
EpipolarNVS: leveraging on Epipolar geometry for single-image Novel View Synthesis
Gaétan LandreauMohamed Tamaazousti
Novel-view synthesis (NVS) can be tackled through different approaches, depending on the general setting: a single source image to a short video sequence, exact or noisy camera pose information, 3D-based information such as point clouds etc. The most challenging scenario, the one where we stand in this work, only considers a unique source image to generate a novel one from another viewpoint. However, in such a tricky situation, the latest learning-based solutions often struggle to integrate the camera viewpoint transformation. Indeed, the extrinsic information is often passed as-is, through a low-dimensional vector. It might even occur that such a camera pose, when parametrized as Euler angles, is quantized through a one-hot representation. This vanilla encoding choice prevents the learnt architecture from inferring novel views on a continuous basis (from a camera pose perspective). We claim it exists an elegant way to better encode relative camera pose, by leveraging 3D-related concepts such as the epipolar constraint. We, therefore, introduce an innovative method that encodes the viewpoint transformation as a 2D feature image. Such a camera encoding strategy gives meaningful insights to the network regarding how the camera has moved in space between the two views. By encoding the camera pose information as a finite number of coloured epipolar lines, we demonstrate through our experiments that our strategy outperforms vanilla encoding.
pure

Monday 24 October 2022

465) [2022] S$^3$-NeRF: Neural Reflectance Field from Shading and Shadow under a Single Viewpoint
S$^3$-NeRF: Neural Reflectance Field from Shading and Shadow under a Single Viewpoint
Wenqi YangGuanying ChenChaofeng ChenZhenfang ChenKwan-Yee K. Wong
In this paper, we address the "dual problem" of multi-view scene reconstruction in which we utilize single-view images captured under different point lights to learn a neural scene representation. Different from existing single-view methods which can only recover a 2.5D scene representation (i.e., a normal / depth map for the visible surface), our method learns a neural reflectance field to represent the 3D geometry and BRDFs of a scene. Instead of relying on multi-view photo-consistency, our method exploits two information-rich monocular cues, namely shading and shadow, to infer scene geometry. Experiments on multiple challenging datasets show that our method is capable of recovering 3D geometry, including both visible and invisible parts, of a scene from single-view images. Thanks to the neural reflectance field representation, our method is robust to depth discontinuities. It supports applications like novel-view synthesis and relighting. Our code and model can be found at https://ywq.github.io/s3nerf.
pure

Thursday 20 October 2022

464) [2022] Neural Matching Fields: Implicit Representation of Matching Fields for Visual Correspondence
Neural Matching Fields: Implicit Representation of Matching Fields for Visual Correspondence
Sunghwan HongJisu NamSeokju ChoSusung HongSangryul JeonDongbo MinSeungryong Kim
Existing pipelines of semantic correspondence commonly include extracting high-level semantic features for the invariance against intra-class variations and background clutters. This architecture, however, inevitably results in a low-resolution matching field that additionally requires an ad-hoc interpolation process as a post-processing for converting it into a high-resolution one, certainly limiting the overall performance of matching results. To overcome this, inspired by recent success of implicit neural representation, we present a novel method for semantic correspondence, called Neural Matching Field (NeMF). However, complicacy and high-dimensionality of a 4D matching field are the major hindrances, which we propose a cost embedding network to process a coarse cost volume to use as a guidance for establishing high-precision matching field through the following fully-connected network. Nevertheless, learning a high-dimensional matching field remains challenging mainly due to computational complexity, since a naive exhaustive inference would require querying from all pixels in the 4D space to infer pixel-wise correspondences. To overcome this, we propose adequate training and inference procedures, which in the training phase, we randomly sample matching candidates and in the inference phase, we iteratively performs PatchMatch-based inference and coordinate optimization at test time. With these combined, competitive results are attained on several standard benchmarks for semantic correspondence. Code and pre-trained weights are available at https://ku-cvlab.github.io/NeMF/.
463) [2022] Neural Matching Fields: Implicit Representation of Matching Fields for Visual Correspondence
Neural Matching Fields: Implicit Representation of Matching Fields for Visual Correspondence
Sunghwan HongJisu NamSeokju ChoSusung HongSangryul JeonDongbo MinSeungryong Kim
Existing pipelines of semantic correspondence commonly include extracting high-level semantic features for the invariance against intra-class variations and background clutters. This architecture, however, inevitably results in a low-resolution matching field that additionally requires an ad-hoc interpolation process as a post-processing for converting it into a high-resolution one, certainly limiting the overall performance of matching results. To overcome this, inspired by recent success of implicit neural representation, we present a novel method for semantic correspondence, called Neural Matching Field (NeMF). However, complicacy and high-dimensionality of a 4D matching field are the major hindrances, which we propose a cost embedding network to process a coarse cost volume to use as a guidance for establishing high-precision matching field through the following fully-connected network. Nevertheless, learning a high-dimensional matching field remains challenging mainly due to computational complexity, since a naive exhaustive inference would require querying from all pixels in the 4D space to infer pixel-wise correspondences. To overcome this, we propose adequate training and inference procedures, which in the training phase, we randomly sample matching candidates and in the inference phase, we iteratively performs PatchMatch-based inference and coordinate optimization at test time. With these combined, competitive results are attained on several standard benchmarks for semantic correspondence. Code and pre-trained weights are available at https://ku-cvlab.github.io/NeMF/.
pure
462) [2022] Neural Matching Fields: Implicit Representation of Matching Fields for Visual Correspondence
Neural Matching Fields: Implicit Representation of Matching Fields for Visual Correspondence
Sunghwan HongJisu NamSeokju ChoSusung HongSangryul JeonDongbo MinSeungryong Kim
Existing pipelines of semantic correspondence commonly include extracting high-level semantic features for the invariance against intra-class variations and background clutters. This architecture, however, inevitably results in a low-resolution matching field that additionally requires an ad-hoc interpolation process as a post-processing for converting it into a high-resolution one, certainly limiting the overall performance of matching results. To overcome this, inspired by recent success of implicit neural representation, we present a novel method for semantic correspondence, called Neural Matching Field (NeMF). However, complicacy and high-dimensionality of a 4D matching field are the major hindrances, which we propose a cost embedding network to process a coarse cost volume to use as a guidance for establishing high-precision matching field through the following fully-connected network. Nevertheless, learning a high-dimensional matching field remains challenging mainly due to computational complexity, since a naive exhaustive inference would require querying from all pixels in the 4D space to infer pixel-wise correspondences. To overcome this, we propose adequate training and inference procedures, which in the training phase, we randomly sample matching candidates and in the inference phase, we iteratively performs PatchMatch-based inference and coordinate optimization at test time. With these combined, competitive results are attained on several standard benchmarks for semantic correspondence. Code and pre-trained weights are available at https://ku-cvlab.github.io/NeMF/.

Monday 17 October 2022

461) [2022] X-NeRF: Explicit Neural Radiance Field for Multi-Scene 360$^{\circ} $ Insufficient RGB-D Views
X-NeRF: Explicit Neural Radiance Field for Multi-Scene 360$^{\circ} $ Insufficient RGB-D Views
Haoyi ZhuHao-Shu FangCewu Lu
Neural Radiance Fields (NeRFs), despite their outstanding performance on novel view synthesis, often need dense input views. Many papers train one model for each scene respectively and few of them explore incorporating multi-modal data into this problem. In this paper, we focus on a rarely discussed but important setting: can we train one model that can represent multiple scenes, with 360$^\circ $ insufficient views and RGB-D images? We refer insufficient views to few extremely sparse and almost non-overlapping views. To deal with it, X-NeRF, a fully explicit approach which learns a general scene completion process instead of a coordinate-based mapping, is proposed. Given a few insufficient RGB-D input views, X-NeRF first transforms them to a sparse point cloud tensor and then applies a 3D sparse generative Convolutional Neural Network (CNN) to complete it to an explicit radiance field whose volumetric rendering can be conducted fast without running networks during inference. To avoid overfitting, besides common rendering loss, we apply perceptual loss as well as view augmentation through random rotation on point clouds. The proposed methodology significantly out-performs previous implicit methods in our setting, indicating the great potential of proposed problem and approach. Codes and data are available at https://github.com/HaoyiZhu/XNeRF.
pure
460) [2022] DreamFusion: Text-to-3D using 2D Diffusion
DreamFusion: Text-to-3D using 2D Diffusion
Ben PooleAjay JainJonathan T. BarronBen Mildenhall
Recent breakthroughs in text-to-image synthesis have been driven by diffusion models trained on billions of image-text pairs. Adapting this approach to 3D synthesis would require large-scale datasets of labeled 3D data and efficient architectures for denoising 3D data, neither of which currently exist. In this work, we circumvent these limitations by using a pretrained 2D text-to-image diffusion model to perform text-to-3D synthesis. We introduce a loss based on probability density distillation that enables the use of a 2D diffusion model as a prior for optimization of a parametric image generator. Using this loss in a DeepDream-like procedure, we optimize a randomly-initialized 3D model (a Neural Radiance Field, or NeRF) via gradient descent such that its 2D renderings from random angles achieve a low loss. The resulting 3D model of the given text can be viewed from any angle, relit by arbitrary illumination, or composited into any 3D environment. Our approach requires no 3D training data and no modifications to the image diffusion model, demonstrating the effectiveness of pretrained image diffusion models as priors.
pure

Saturday 15 October 2022

459) [2021] Zero-Shot Text-Guided Object Generation with Dream Fields
Zero-Shot Text-Guided Object Generation with Dream Fields
Ajay JainBen MildenhallJonathan T. BarronPieter AbbeelBen Poole
We combine neural rendering with multi-modal image and text representations to synthesize diverse 3D objects solely from natural language descriptions. Our method, Dream Fields, can generate the geometry and color of a wide range of objects without 3D supervision. Due to the scarcity of diverse, captioned 3D data, prior methods only generate objects from a handful of categories, such as ShapeNet. Instead, we guide generation with image-text models pre-trained on large datasets of captioned images from the web. Our method optimizes a Neural Radiance Field from many camera views so that rendered images score highly with a target caption according to a pre-trained CLIP model. To improve fidelity and visual quality, we introduce simple geometric priors, including sparsity-inducing transmittance regularization, scene bounds, and new MLP architectures. In experiments, Dream Fields produce realistic, multi-view consistent object geometry and color from a variety of natural language captions.
pure
458) [2022] IntrinsicNeRF: Learning Intrinsic Neural Radiance Fields for Editable Novel View Synthesis
IntrinsicNeRF: Learning Intrinsic Neural Radiance Fields for Editable Novel View Synthesis
Weicai YeShuo ChenChong BaoHujun BaoMarc PollefeysZhaopeng CuiGuofeng Zhang
We present intrinsic neural radiance fields, dubbed IntrinsicNeRF, that introduce intrinsic decomposition into the NeRF-based~\cite{mildenhall2020nerf} neural rendering method and can perform editable novel view synthesis in room-scale scenes while existing inverse rendering combined with neural rendering methods~\cite{zhang2021physg, zhang2022modeling} can only work on object-specific scenes. Given that intrinsic decomposition is a fundamentally ambiguous and under-constrained inverse problem, we propose a novel distance-aware point sampling and adaptive reflectance iterative clustering optimization method that enables IntrinsicNeRF with traditional intrinsic decomposition constraints to be trained in an unsupervised manner, resulting in temporally consistent intrinsic decomposition results. To cope with the problem of different adjacent instances of similar reflectance in a scene being incorrectly clustered together, we further propose a hierarchical clustering method with coarse-to-fine optimization to obtain a fast hierarchical indexing representation. It enables compelling real-time augmented reality applications such as scene recoloring, material editing, and illumination variation. Extensive experiments on Blender Object and Replica Scene demonstrate that we can obtain high-quality, consistent intrinsic decomposition results and high-fidelity novel view synthesis even for challenging sequences. Code and data are available on the project webpage: https://zju3dv.github.io/intrinsic_nerf/.
pure

Tuesday 23 August 2022

457) A Portable Multiscopic Camera for Novel View and Time Synthesis in Dynamic Scenes
A Portable Multiscopic Camera for Novel View and Time Synthesis in Dynamic Scenes
Tianjia ZhangYuen-Fui LauQifeng Chen
We present a portable multiscopic camera system with a dedicated model for novel view and time synthesis in dynamic scenes. Our goal is to render high-quality images for a dynamic scene from any viewpoint at any time using our portable multiscopic camera. To achieve such novel view and time synthesis, we develop a physical multiscopic camera equipped with five cameras to train a neural radiance field (NeRF) in both time and spatial domains for dynamic scenes. Our model maps a 6D coordinate (3D spatial position, 1D temporal coordinate, and 2D viewing direction) to view-dependent and time-varying emitted radiance and volume density. Volume rendering is applied to render a photo-realistic image at a specified camera pose and time. To improve the robustness of our physical camera, we propose a camera parameter optimization module and a temporal frame interpolation module to promote information propagation across time. We conduct experiments on both real-world and synthetic datasets to evaluate our system, and the results show that our approach outperforms alternative solutions qualitatively and quantitatively. Our code and dataset are available at https://yuenfuilau.github.io/.
pure

Saturday 20 August 2022

456) [2022] Is Attention All NeRF Needs?
Is Attention All NeRF Needs?
Mukund Varma TPeihao WangXuxi ChenTianlong ChenSubhashini VenugopalanZhangyang Wang
We present Generalizable NeRF Transformer (GNT), a pure, unified transformer-based architecture that efficiently reconstructs Neural Radiance Fields (NeRFs) on the fly from source views. Unlike prior works on NeRF that optimize a per-scene implicit representation by inverting a handcrafted rendering equation, GNT achieves generalizable neural scene representation and rendering, by encapsulating two transformer-based stages. The first stage of GNT, called view transformer, leverages multi-view geometry as an inductive bias for attention-based scene representation, and predicts coordinate-aligned features by aggregating information from epipolar lines on the neighboring views. The second stage of GNT, named ray transformer, renders novel views by ray marching and directly decodes the sequence of sampled point features using the attention mechanism. Our experiments demonstrate that when optimized on a single scene, GNT can successfully reconstruct NeRF without explicit rendering formula, and even improve the PSNR by ~1.3dB on complex scenes due to the learnable ray renderer. When trained across various scenes, GNT consistently achieves the state-of-the-art performance when transferring to forward-facing LLFF dataset (LPIPS ~20%, SSIM ~25%$) and synthetic blender dataset (LPIPS ~20%, SSIM ~4%). In addition, we show that depth and occlusion can be inferred from the learned attention maps, which implies that the pure attention mechanism is capable of learning a physically-grounded rendering process. All these results bring us one step closer to the tantalizing hope of utilizing transformers as the "universal modeling tool" even for graphics. Please refer to our project page for video results: https://vita-group.github.io/GNT/.
pure
455) [2022] End-to-end View Synthesis via NeRF Attention
End-to-end View Synthesis via NeRF Attention
Zelin ZhaoJiaya Jia
In this paper, we present a simple seq2seq formulation for view synthesis where we take a set of ray points as input and output colors corresponding to the rays. Directly applying a standard transformer on this seq2seq formulation has two limitations. First, the standard attention cannot successfully fit the volumetric rendering procedure, and therefore high-frequency components are missing in the synthesized views. Second, applying global attention to all rays and pixels is extremely inefficient. Inspired by the neural radiance field (NeRF), we propose the NeRF attention (NeRFA) to address the above problems. On the one hand, NeRFA considers the volumetric rendering equation as a soft feature modulation procedure. In this way, the feature modulation enhances the transformers with the NeRF-like inductive bias. On the other hand, NeRFA performs multi-stage attention to reduce the computational overhead. Furthermore, the NeRFA model adopts the ray and pixel transformers to learn the interactions between rays and pixels. NeRFA demonstrates superior performance over NeRF and NerFormer on four datasets: DeepVoxels, Blender, LLFF, and CO3D. Besides, NeRFA establishes a new state-of-the-art under two settings: the single-scene view synthesis and the category-centric novel view synthesis. The code will be made publicly available.
pure

Saturday 13 August 2022

454) [2022] Diffusion Probabilistic Modeling for Video Generation
Diffusion Probabilistic Modeling for Video Generation
Ruihan YangPrakhar SrivastavaStephan Mandt
Denoising diffusion probabilistic models are a promising new class of generative models that mark a milestone in high-quality image generation. This paper showcases their ability to sequentially generate video, surpassing prior methods in perceptual and probabilistic forecasting metrics. We propose an autoregressive, end-to-end optimized video diffusion model inspired by recent advances in neural video compression. The model successively generates future frames by correcting a deterministic next-frame prediction using a stochastic residual generated by an inverse diffusion process. We compare this approach against five baselines on four datasets involving natural and simulation-based videos. We find significant improvements in terms of perceptual quality for all datasets. Furthermore, by introducing a scalable version of the Continuous Ranked Probability Score (CRPS) applicable to video, we show that our model also outperforms existing approaches in their probabilistic frame forecasting ability.
pure

Wednesday 10 August 2022

453) [2022] MobileNeRF: Exploiting the Polygon Rasterization Pipeline for Efficient Neural Field Rendering on Mobile Architectures
MobileNeRF: Exploiting the Polygon Rasterization Pipeline for Efficient Neural Field Rendering on Mobile Architectures
Zhiqin ChenThomas FunkhouserPeter HedmanAndrea Tagliasacchi
Neural Radiance Fields (NeRFs) have demonstrated amazing ability to synthesize images of 3D scenes from novel views. However, they rely upon specialized volumetric rendering algorithms based on ray marching that are mismatched to the capabilities of widely deployed graphics hardware. This paper introduces a new NeRF representation based on textured polygons that can synthesize novel images efficiently with standard rendering pipelines. The NeRF is represented as a set of polygons with textures representing binary opacities and feature vectors. Traditional rendering of the polygons with a z-buffer yields an image with features at every pixel, which are interpreted by a small, view-dependent MLP running in a fragment shader to produce a final pixel color. This approach enables NeRFs to be rendered with the traditional polygon rasterization pipeline, which provides massive pixel-level parallelism, achieving interactive frame rates on a wide range of compute platforms, including mobile phones.
pure

Friday 01 July 2022

452) [2021] Ref-NeRF: Structured View-Dependent Appearance for Neural Radiance Fields
Ref-NeRF: Structured View-Dependent Appearance for Neural Radiance Fields
Dor VerbinPeter HedmanBen MildenhallTodd ZicklerJonathan T. BarronPratul P. Srinivasan
Neural Radiance Fields (NeRF) is a popular view synthesis technique that represents a scene as a continuous volumetric function, parameterized by multilayer perceptrons that provide the volume density and view-dependent emitted radiance at each location. While NeRF-based techniques excel at representing fine geometric structures with smoothly varying view-dependent appearance, they often fail to accurately capture and reproduce the appearance of glossy surfaces. We address this limitation by introducing Ref-NeRF, which replaces NeRF's parameterization of view-dependent outgoing radiance with a representation of reflected radiance and structures this function using a collection of spatially-varying scene properties. We show that together with a regularizer on normal vectors, our model significantly improves the realism and accuracy of specular reflections. Furthermore, we show that our model's internal representation of outgoing radiance is interpretable and useful for scene editing.
pure

Wednesday 15 June 2022

451) [2022] NPBG++: Accelerating Neural Point-Based Graphics
NPBG++: Accelerating Neural Point-Based Graphics
Ruslan RakhimovAndrei-Timotei ArdeleanVictor LempitskyEvgeny Burnaev
We present a new system (NPBG++) for the novel view synthesis (NVS) task that achieves high rendering realism with low scene fitting time. Our method efficiently leverages the multiview observations and the point cloud of a static scene to predict a neural descriptor for each point, improving upon the pipeline of Neural Point-Based Graphics in several important ways. By predicting the descriptors with a single pass through the source images, we lift the requirement of per-scene optimization while also making the neural descriptors view-dependent and more suitable for scenes with strong non-Lambertian effects. In our comparisons, the proposed system outperforms previous NVS approaches in terms of fitting and rendering runtimes while producing images of similar quality.
pure

Thursday 09 June 2022

450) [2021] Learning Neural Light Fields with Ray-Space Embedding Networks
Learning Neural Light Fields with Ray-Space Embedding Networks
Benjamin AttalJia-Bin HuangMichael ZollhoeferJohannes KopfChangil Kim
Neural radiance fields (NeRFs) produce state-of-the-art view synthesis results. However, they are slow to render, requiring hundreds of network evaluations per pixel to approximate a volume rendering integral. Baking NeRFs into explicit data structures enables efficient rendering, but results in a large increase in memory footprint and, in many cases, a quality reduction. In this paper, we propose a novel neural light field representation that, in contrast, is compact and directly predicts integrated radiance along rays. Our method supports rendering with a single network evaluation per pixel for small baseline light field datasets and can also be applied to larger baselines with only a few evaluations per pixel. At the core of our approach is a ray-space embedding network that maps the 4D ray-space manifold into an intermediate, interpolable latent space. Our method achieves state-of-the-art quality on dense forward-facing datasets such as the Stanford Light Field dataset. In addition, for forward-facing scenes with sparser inputs we achieve results that are competitive with NeRF-based approaches in terms of quality while providing a better speed/quality/memory trade-off with far fewer network evaluations.
pure

Saturday 04 June 2022

449) [2021] Deep Marching Tetrahedra: a Hybrid Representation for High-Resolution 3D Shape Synthesis
Deep Marching Tetrahedra: a Hybrid Representation for High-Resolution 3D Shape Synthesis
Tianchang ShenJun GaoKangxue YinMing-Yu LiuSanja Fidler
We introduce DMTet, a deep 3D conditional generative model that can synthesize high-resolution 3D shapes using simple user guides such as coarse voxels. It marries the merits of implicit and explicit 3D representations by leveraging a novel hybrid 3D representation. Compared to the current implicit approaches, which are trained to regress the signed distance values, DMTet directly optimizes for the reconstructed surface, which enables us to synthesize finer geometric details with fewer artifacts. Unlike deep 3D generative models that directly generate explicit representations such as meshes, our model can synthesize shapes with arbitrary topology. The core of DMTet includes a deformable tetrahedral grid that encodes a discretized signed distance function and a differentiable marching tetrahedra layer that converts the implicit signed distance representation to the explicit surface mesh representation. This combination allows joint optimization of the surface geometry and topology as well as generation of the hierarchy of subdivisions using reconstruction and adversarial losses defined explicitly on the surface mesh. Our approach significantly outperforms existing work on conditional shape synthesis from coarse voxel inputs, trained on a dataset of complex 3D animal shapes. Project page: https://nv-tlabs.github.io/DMTet/.
pure

Saturday 28 May 2022

448) [2022] ReLU Fields: The Little Non-linearity That Could
ReLU Fields: The Little Non-linearity That Could
Animesh KarnewarTobias RitschelOliver WangNiloy J. Mitra
In many recent works, multi-layer perceptions (MLPs) have been shown to be suitable for modeling complex spatially-varying functions including images and 3D scenes. Although the MLPs are able to represent complex scenes with unprecedented quality and memory footprint, this expressive power of the MLPs, however, comes at the cost of long training and inference times. On the other hand, bilinear/trilinear interpolation on regular grid based representations can give fast training and inference times, but cannot match the quality of MLPs without requiring significant additional memory. Hence, in this work, we investigate what is the smallest change to grid-based representations that allows for retaining the high fidelity result of MLPs while enabling fast reconstruction and rendering times. We introduce a surprisingly simple change that achieves this task -- simply allowing a fixed non-linearity (ReLU) on interpolated grid values. When combined with coarse to-fine optimization, we show that such an approach becomes competitive with the state-of-the-art. We report results on radiance fields, and occupancy fields, and compare against multiple existing alternatives. Code and data for the paper are available at https://geometry.cs.ucl.ac.uk/projects/2022/relu_fields.
pure

Friday 27 May 2022

447) [2021] Moir\'e Attack (MA): A New Potential Risk of Screen Photos
Moir\'e Attack (MA): A New Potential Risk of Screen Photos
Dantong NiuRuohao GuoYisen Wang
Images, captured by a camera, play a critical role in training Deep Neural Networks (DNNs). Usually, we assume the images acquired by cameras are consistent with the ones perceived by human eyes. However, due to the different physical mechanisms between human-vision and computer-vision systems, the final perceived images could be very different in some cases, for example shooting on digital monitors. In this paper, we find a special phenomenon in digital image processing, the moir\'e effect, that could cause unnoticed security threats to DNNs. Based on it, we propose a Moir\'e Attack (MA) that generates the physical-world moir\'e pattern adding to the images by mimicking the shooting process of digital devices. Extensive experiments demonstrate that our proposed digital Moir\'e Attack (MA) is a perfect camouflage for attackers to tamper with DNNs with a high success rate ($100.0\%$ for untargeted and $97.0\%$ for targeted attack with the noise budget $\epsilon=4$), high transferability rate across different models, and high robustness under various defenses. Furthermore, MA owns great stealthiness because the moir\'e effect is unavoidable due to the camera's inner physical structure, which therefore hardly attracts the awareness of humans. Our code is available at https://github.com/Dantong88/Moire_Attack.
pure

Wednesday 25 May 2022

446) [2022] Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding
Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding
Chitwan SahariaWilliam ChanSaurabh SaxenaLala LiJay WhangEmily DentonSeyed Kamyar Seyed GhasemipourBurcu Karagol AyanS. Sara MahdaviRapha Gontijo LopesTim SalimansJonathan HoDavid J. FleetMohammad Norouzi
We present Imagen, a text-to-image diffusion model with an unprecedented degree of photorealism and a deep level of language understanding. Imagen builds on the power of large transformer language models in understanding text and hinges on the strength of diffusion models in high-fidelity image generation. Our key discovery is that generic large language models (e.g. T5), pretrained on text-only corpora, are surprisingly effective at encoding text for image synthesis: increasing the size of the language model in Imagen boosts both sample fidelity and image-text alignment much more than increasing the size of the image diffusion model. Imagen achieves a new state-of-the-art FID score of 7.27 on the COCO dataset, without ever training on COCO, and human raters find Imagen samples to be on par with the COCO data itself in image-text alignment. To assess text-to-image models in greater depth, we introduce DrawBench, a comprehensive and challenging benchmark for text-to-image models. With DrawBench, we compare Imagen with recent methods including VQ-GAN+CLIP, Latent Diffusion Models, and DALL-E 2, and find that human raters prefer Imagen over other models in side-by-side comparisons, both in terms of sample quality and image-text alignment. See https://imagen.research.google/ for an overview of the results.
ta

Saturday 21 May 2022

445) [2021] Learning Strides in Convolutional Neural Networks
Learning Strides in Convolutional Neural Networks
Rachid RiadOlivier TeboulDavid GrangierNeil Zeghidour
Convolutional neural networks typically contain several downsampling operators, such as strided convolutions or pooling layers, that progressively reduce the resolution of intermediate...
ta
444) [2022] StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets
StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets
Axel SauerKatja SchwarzAndreas Geiger
Computer graphics has experienced a recent surge of data-centric approaches for photorealistic and controllable content creation. StyleGAN in particular sets new standards for generative modeling regarding image quality and controllability. However, StyleGAN's performance severely degrades on large unstructured datasets such as ImageNet. StyleGAN was designed for controllability; hence, prior works suspect its restrictive design to be unsuitable for diverse datasets. In contrast, we find the main limiting factor to be the current training strategy. Following the recently introduced Projected GAN paradigm, we leverage powerful neural network priors and a progressive growing strategy to successfully train the latest StyleGAN3 generator on ImageNet. Our final model, StyleGAN-XL, sets a new state-of-the-art on large-scale image synthesis and is the first to generate images at a resolution of $1024^2$ at such a dataset scale. We demonstrate that this model can invert and edit images beyond the narrow domain of portraits or specific object classes.
ta
443) [2021] Projected GANs Converge Faster
Projected GANs Converge Faster
Axel SauerKashyap ChittaJens MüllerAndreas Geiger
Generative Adversarial Networks (GANs) produce high-quality images but are challenging to train. They need careful regularization, vast amounts of compute, and expensive hyper-parameter sweeps. We make significant headway on these issues by projecting generated and real samples into a fixed, pretrained feature space. Motivated by the finding that the discriminator cannot fully exploit features from deeper layers of the pretrained model, we propose a more effective strategy that mixes features across channels and resolutions. Our Projected GAN improves image quality, sample efficiency, and convergence speed. It is further compatible with resolutions of up to one Megapixel and advances the state-of-the-art Fr\'echet Inception Distance (FID) on twenty-two benchmark datasets. Importantly, Projected GANs match the previously lowest FIDs up to 40 times faster, cutting the wall-clock time from 5 days to less than 3 hours given the same computational resources.
ta
teng
442) [2022] Flamingo: a Visual Language Model for Few-Shot Learning
Flamingo: a Visual Language Model for Few-Shot Learning
Jean-Baptiste AlayracJeff DonahuePauline LucAntoine MiechIain BarrYana HassonKarel LencArthur MenschKatie MillicanMalcolm ReynoldsRoman RingEliza RutherfordSerkan CabiTengda HanZhitao GongSina SamangooeiMarianne MonteiroJacob MenickSebastian BorgeaudAndrew BrockAida NematzadehSahand SharifzadehMikolaj BinkowskiRicardo BarreiraOriol VinyalsAndrew ZissermanKaren Simonyan
Building models that can be rapidly adapted to numerous tasks using only a handful of annotated examples is an open challenge for multimodal machine learning research. We introduce Flamingo, a family of Visual Language Models (VLM) with this ability. Flamingo models include key architectural innovations to: (i) bridge powerful pretrained vision-only and language-only models, (ii) handle sequences of arbitrarily interleaved visual and textual data, and (iii) seamlessly ingest images or videos as inputs. Thanks to their flexibility, Flamingo models can be trained on large-scale multimodal web corpora containing arbitrarily interleaved text and images, which is key to endow them with in-context few-shot learning capabilities. We perform a thorough evaluation of the proposed Flamingo models, exploring and measuring their ability to rapidly adapt to a variety of image and video understanding benchmarks. These include open-ended tasks such as visual question-answering, where the model is prompted with a question which it has to answer, captioning tasks, which evaluate the ability to describe a scene or an event, and close-ended tasks such as multiple choice visual question-answering. For tasks lying anywhere on this spectrum, we demonstrate that a single Flamingo model can achieve a new state of the art for few-shot learning, simply by prompting the model with task-specific examples. On many of these benchmarks, Flamingo actually surpasses the performance of models that are fine-tuned on thousands of times more task-specific data.
ta

Monday 09 May 2022

441) [2022] Virtual view synthesis for 3D light-field display based on feature reprojection and fusion
Virtual view synthesis for 3D light-field display based on feature reprojection and fusion
Three-dimensional light field display has achieved an impressive result and is a great potential display method. To provide real-world dense views eff…
pure

Saturday 07 May 2022

440) [2022] Filtering In Neural Implicit Functions
Filtering In Neural Implicit Functions
Yixin Zhuang
Neural implicit functions are highly effective for representing many kinds of data, including images and 3D shapes. However, the implicit functions learned by neural networks usually include over-smoothed patches or noisy artifacts into the results if the data has many scales of details or a wide range of frequencies. Adapting the result containing both noise and over-smoothed regions usually suffers from either over smoothing or noisy issues. To overcome this challenge, we propose a new framework, coined FINN, that integrates a filtering module into the neural network to perform data generation while filtering artifacts. The filtering module has a smoothing operator that acts on the intermediate results of the network and a recovering operator that brings distinct details from the input back to the regions overly smoothed. The proposed method significantly alleviates over smoothing or noisy issues. We demonstrate the advantage of the FINN on the image regression task, considering both real-world and synthetic images, and showcases significant improvement on both quantitative and qualitative results compared to state-of-the-art methods. Moreover, FINN yields better performance in both convergence speed and network stability. Source code is available at https://github.com/yixin26/FINN.
pure
439) [2022] NeurMiPs: Neural Mixture of Planar Experts for View Synthesis
NeurMiPs: Neural Mixture of Planar Experts for View Synthesis
Zhi-Hao LinWei-Chiu MaHao-Yu HsuYu-Chiang Frank WangShenlong Wang
We present Neural Mixtures of Planar Experts (NeurMiPs), a novel planar-based scene representation for modeling geometry and appearance. NeurMiPs leverages a collection of local planar experts in 3D space as the scene representation. Each planar expert consists of the parameters of the local rectangular shape representing geometry and a neural radiance field modeling the color and opacity. We render novel views by calculating ray-plane intersections and composite output colors and densities at intersected points to the image. NeurMiPs blends the efficiency of explicit mesh rendering and flexibility of the neural radiance field. Experiments demonstrate superior performance and speed of our proposed method, compared to other 3D representations in novel view synthesis.
pure

Thursday 05 May 2022

438) [2022] NEX+: Novel View Synthesis with Neural Regularisation Over Multi-Plane Images
NEX+: Novel View Synthesis with Neural Regularisation Over Multi-Plane Images
Wenpeng XingJie Chen
We propose Nex+, a neural Multi-Plane Image (MPI) representation with alpha denoising for the task of novel view synthesis (NVS). Overfitting to training data is a common challenge for all learning-based models. We propose a novel solution for resolving such issue in the context of NVS with signal denoising-motivated operations over the alpha coefficients of the MPI, without any additional requirements for supervision. Nex+ contains a novel 5D Alpha Neural Regulariser (ANR), which favors low-frequency components in the angular domain, i.e., the alpha coefficients’ signal sub-space indicating various viewing directions. ANR’s angular low-frequency property derives from its small number of angular encoding levels and output basis. The regularised alpha in Nex+ can model the scene geometry more accurately than Nex, and outperforms other state-of-the-art methods on public datasets for the task of NVS.
pure

Wednesday 04 May 2022

437) [2021] Diffusion Schr\"odinger Bridge with Applications to Score-Based Generative Modeling
Diffusion Schr\"odinger Bridge with Applications to Score-Based Generative Modeling
Valentin De BortoliJames ThorntonJeremy HengArnaud Doucet
Progressively applying Gaussian noise transforms complex data distributions to approximately Gaussian. Reversing this dynamic defines a generative model. When the forward noising process is given by a Stochastic Differential Equation (SDE), Song et al. (2021) demonstrate how the time inhomogeneous drift of the associated reverse-time SDE may be estimated using score-matching. A limitation of this approach is that the forward-time SDE must be run for a sufficiently long time for the final distribution to be approximately Gaussian. In contrast, solving the Schr\"odinger Bridge problem (SB), i.e. an entropy-regularized optimal transport problem on path spaces, yields diffusions which generate samples from the data distribution in finite time. We present Diffusion SB (DSB), an original approximation of the Iterative Proportional Fitting (IPF) procedure to solve the SB problem, and provide theoretical analysis along with generative modeling experiments. The first DSB iteration recovers the methodology proposed by Song et al. (2021), with the flexibility of using shorter time intervals, as subsequent DSB iterations reduce the discrepancy between the final-time marginal of the forward (resp. backward) SDE with respect to the prior (resp. data) distribution. Beyond generative modeling, DSB offers a widely applicable computational optimal transport tool as the continuous state-space analogue of the popular Sinkhorn algorithm (Cuturi, 2013).
teng

Wednesday 13 April 2022

436) [2021] High-Resolution Image Synthesis with Latent Diffusion Models
High-Resolution Image Synthesis with Latent Diffusion Models
Robin RombachAndreas BlattmannDominik LorenzPatrick EsserBjörn Ommer
By decomposing the image formation process into a sequential application of denoising autoencoders, diffusion models (DMs) achieve state-of-the-art synthesis results on image data and beyond. Additionally, their formulation allows for a guiding mechanism to control the image generation process without retraining. However, since these models typically operate directly in pixel space, optimization of powerful DMs often consumes hundreds of GPU days and inference is expensive due to sequential evaluations. To enable DM training on limited computational resources while retaining their quality and flexibility, we apply them in the latent space of powerful pretrained autoencoders. In contrast to previous work, training diffusion models on such a representation allows for the first time to reach a near-optimal point between complexity reduction and detail preservation, greatly boosting visual fidelity. By introducing cross-attention layers into the model architecture, we turn diffusion models into powerful and flexible generators for general conditioning inputs such as text or bounding boxes and high-resolution synthesis becomes possible in a convolutional manner. Our latent diffusion models (LDMs) achieve a new state of the art for image inpainting and highly competitive performance on various tasks, including unconditional image generation, semantic scene synthesis, and super-resolution, while significantly reducing computational requirements compared to pixel-based DMs. Code is available at https://github.com/CompVis/latent-diffusion .
ta
435) Hierarchical Text-Conditional Image Generation with CLIP Latents
Hierarchical Text-Conditional Image Generation with CLIP Latents
Aditya RameshPrafulla DhariwalAlex NicholCasey ChuMark Chen
Contrastive models like CLIP have been shown to learn robust representations of images that capture both semantics and style. To leverage these representations for image generation, we propose a two-stage model: a prior that generates a CLIP image embedding given a text caption, and a decoder that generates an image conditioned on the image embedding. We show that explicitly generating image representations improves image diversity with minimal loss in photorealism and caption similarity. Our decoders conditioned on image representations can also produce variations of an image that preserve both its semantics and style, while varying the non-essential details absent from the image representation. We use diffusion models for the decoder and experiment with both autoregressive and diffusion models for the prior, finding that the latter are computationally more efficient and produce higher-quality samples.
ta
434) [2020] Learning Robust Representations via Multi-View Information Bottleneck
Learning Robust Representations via Multi-View Information Bottleneck
Marco FedericiAnjan DuttaPatrick ForréNate KushmanZeynep Akata
The information bottleneck principle provides an information-theoretic method for representation learning, by training an encoder to retain all information which is relevant for predicting the label while minimizing the amount of other, excess information in the representation. The original formulation, however, requires labeled data to identify the superfluous information. In this work, we extend this ability to the multi-view unsupervised setting, where two views of the same underlying entity are provided but the label is unknown. This enables us to identify superfluous information as that not shared by both views. A theoretical analysis leads to the definition of a new multi-view model that produces state-of-the-art results on the Sketchy dataset and label-limited versions of the MIR-Flickr dataset. We also extend our theory to the single-view setting by taking advantage of standard data augmentation techniques, empirically showing better generalization capabilities when compared to common unsupervised approaches for representation learning.
ta
433) [2021] Multi-View Information-Bottleneck Representation Learning
Multi-View Information-Bottleneck Representation Learning
Zhibin WanChangqing ZhangPengfei ZhuQinghua Hu
In real-world applications, clustering or classification can usually be improved by fusing information from different views. Therefore, unsupervised representation learning on multi-view data becomes a compelling topic in machine learning. In this paper, we propose a novel and flexible unsupervised multi-view representation learning model termed Collaborative Multi-View Information Bottleneck Networks (CMIB-Nets), which comprehensively explores the common latent structure and the view-specific intrinsic information, and discards the superfluous information in the data significantly improving the generalization capability of the model. Specifically, our proposed model relies on the information bottleneck principle to integrate the shared representation among different views and the view-specific representation of each view, prompting the multi-view complete representation and flexibly balancing the complementarity and consistency among multiple views. We conduct extensive experiments (including clustering analysis, robustness experiment, and ablation study) on real-world datasets, which empirically show promising generalization ability and robustness compared to state-of-the-arts.
ta
432) [2021] Classifier-Free Diffusion Guidance
Classifier-Free Diffusion Guidance
Jonathan HoTim Salimans
Classifier guidance without a classifier
ta
431) [2021] GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models
GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models
Alex NicholPrafulla DhariwalAditya RameshPranav ShyamPamela MishkinBob McGrewIlya SutskeverMark Chen
Diffusion models have recently been shown to generate high-quality synthetic images, especially when paired with a guidance technique to trade off diversity for fidelity. We explore diffusion models for the problem of text-conditional image synthesis and compare two different guidance strategies: CLIP guidance and classifier-free guidance. We find that the latter is preferred by human evaluators for both photorealism and caption similarity, and often produces photorealistic samples. Samples from a 3.5 billion parameter text-conditional diffusion model using classifier-free guidance are favored by human evaluators to those from DALL-E, even when the latter uses expensive CLIP reranking. Additionally, we find that our models can be fine-tuned to perform image inpainting, enabling powerful text-driven image editing. We train a smaller model on a filtered dataset and release the code and weights at https://github.com/openai/glide-text2im.
aek
ta

Thursday 07 April 2022

430) [2022] Neural Head Avatars from Monocular RGB Videos
Neural Head Avatars from Monocular RGB Videos
Philip-William GrassalMalte PrinzlerTitus LeistnerCarsten RotherMatthias NießnerJustus Thies
We present Neural Head Avatars, a novel neural representation that explicitly models the surface geometry and appearance of an animatable human avatar that can be used for teleconferencing in AR/VR or other applications in the movie or games industry that rely on a digital human. Our representation can be learned from a monocular RGB portrait video that features a range of different expressions and views. Specifically, we propose a hybrid representation consisting of a morphable model for the coarse shape and expressions of the face, and two feed-forward networks, predicting vertex offsets of the underlying mesh as well as a view- and expression-dependent texture. We demonstrate that this representation is able to accurately extrapolate to unseen poses and view points, and generates natural expressions while providing sharp texture details. Compared to previous works on head avatars, our method provides a disentangled shape and appearance model of the complete human head (including hair) that is compatible with the standard graphics pipeline. Moreover, it quantitatively and qualitatively outperforms current state of the art in terms of reconstruction quality and novel-view synthesis.

Wednesday 06 April 2022

429) [2022] Unsupervised Learning of Temporal Abstractions with Slot-based Transformers
Unsupervised Learning of Temporal Abstractions with Slot-based Transformers
Anand GopalakrishnanKazuki IrieJürgen SchmidhuberSjoerd van Steenkiste
The discovery of reusable sub-routines simplifies decision-making and planning in complex reinforcement learning problems. Previous approaches propose to learn such temporal abstractions in a purely unsupervised fashion through observing state-action trajectories gathered from executing a policy. However, a current limitation is that they process each trajectory in an entirely sequential manner, which prevents them from revising earlier decisions about sub-routine boundary points in light of new incoming information. In this work we propose SloTTAr, a fully parallel approach that integrates sequence processing Transformers with a Slot Attention module and adaptive computation for learning about the number of such sub-routines in an unsupervised fashion. We demonstrate how SloTTAr is capable of outperforming strong baselines in terms of boundary point discovery, even for sequences containing variable amounts of sub-routines, while being up to 7x faster to train on existing benchmarks.
ta
428) [2021] AlterSGD: Finding Flat Minima for Continual Learning by Alternative Training
AlterSGD: Finding Flat Minima for Continual Learning by Alternative Training
Zhongzhan HuangMingfu LiangSenwei LiangWei He
Deep neural networks suffer from catastrophic forgetting when learning multiple knowledge sequentially, and a growing number of approaches have been proposed to mitigate this problem. Some of these methods achieved considerable performance by associating the flat local minima with forgetting mitigation in continual learning. However, they inevitably need (1) tedious hyperparameters tuning, and (2) additional computational cost. To alleviate these problems, in this paper, we propose a simple yet effective optimization method, called AlterSGD, to search for a flat minima in the loss landscape. In AlterSGD, we conduct gradient descent and ascent alternatively when the network tends to converge at each session of learning new knowledge. Moreover, we theoretically prove that such a strategy can encourage the optimization to converge to a flat minima. We verify AlterSGD on continual learning benchmark for semantic segmentation and the empirical results show that we can significantly mitigate the forgetting and outperform the state-of-the-art methods with a large margin under challenging continual learning protocols.
ta
427) [2022] Block-Recurrent Transformers
Block-Recurrent Transformers
DeLesley HutchinsImanol SchlagYuhuai WuEthan DyerBehnam Neyshabur
We introduce the Block-Recurrent Transformer, which applies a transformer layer in a recurrent fashion along a sequence, and has linear complexity with respect to sequence length. Our recurrent cell operates on blocks of tokens rather than single tokens, and leverages parallel computation within a block in order to make efficient use of accelerator hardware. The cell itself is strikingly simple. It is merely a transformer layer: it uses self-attention and cross-attention to efficiently compute a recurrent function over a large set of state vectors and tokens. Our design was inspired in part by LSTM cells, and it uses LSTM-style gates, but it scales the typical LSTM cell up by several orders of magnitude. Our implementation of recurrence has the same cost in both computation time and parameter count as a conventional transformer layer, but offers dramatically improved perplexity in language modeling tasks over very long sequences. Our model out-performs a long-range Transformer XL baseline by a wide margin, while running twice as fast. We demonstrate its effectiveness on PG19 (books), arXiv papers, and GitHub source code.
ta
426) [2022] Attention Bottlenecks for Multimodal Fusion
Attention Bottlenecks for Multimodal Fusion
Arsha NagraniShan YangAnurag ArnabAren JansenCordelia SchmidChen Sun
Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.
ta
425) [2021] Addressing Some Limitations of Transformers with Feedback Memory
Addressing Some Limitations of Transformers with Feedback Memory
Angela FanThibaut LavrilEdouard GraveArmand JoulinSainbayar Sukhbaatar
Transformers have been successfully applied to sequential, auto-regressive tasks despite being feedforward networks. Unlike recurrent neural networks, Transformers use attention to capture temporal relations while processing input tokens in parallel. While this parallelization makes them computationally efficient, it restricts the model from fully exploiting the sequential nature of the input. The representation at a given layer can only access representations from lower layers, rather than the higher level representations already available. In this work, we propose the Feedback Transformer architecture that exposes all previous representations to all future representations, meaning the lowest representation of the current timestep is formed from the highest-level abstract representation of the past. We demonstrate on a variety of benchmarks in language modeling, machine translation, and reinforcement learning that the increased representation capacity can create small, shallow models with much stronger performance than comparable Transformers.
ta
424) [2021] RepVGG: Making VGG-style ConvNets Great Again
RepVGG: Making VGG-style ConvNets Great Again
Xiaohan DingXiangyu ZhangNingning MaJungong HanGuiguang DingJian Sun
ta
423) [2022] Scaling Up Your Kernels to 31x31: Revisiting Large Kernel Design in CNNs
Scaling Up Your Kernels to 31x31: Revisiting Large Kernel Design in CNNs
Xiaohan DingXiangyu ZhangYizhuang ZhouJungong HanGuiguang DingJian Sun
In this paper we revisit large kernel design in modern convolutional neural networks (CNNs), which is often neglected in the past few years. Inspired by recent advances of vision transformers (ViTs), we point out that using a few large kernels instead of a stack of small convolutions could be a more powerful paradigm. We therefore summarize 5 guidelines, e.g., applying re-parameterized large depth-wise convolutions, to design efficient high-performance large-kernel CNNs. Following the guidelines, we propose RepLKNet, a pure CNN architecture whose kernel size is as large as 31x31. RepLKNet greatly bridges the performance gap between CNNs and ViTs, e.g., achieving comparable or better results than Swin Transformer on ImageNet and downstream tasks, while the latency of RepLKNet is much lower. Moreover, RepLKNet also shows feasible scalability to big data and large models, obtaining 87.8% top-1 accuracy on ImageNet and 56.0%} mIoU on ADE20K. At last, our study further suggests large-kernel CNNs share several nice properties with ViTs, e.g., much larger effective receptive fields than conventional CNNs, and higher shape bias rather than texture bias. Code & models at https://github.com/megvii-research/RepLKNet.
pure
ta

Wednesday 30 March 2022

422) [2021] Why Do Better Loss Functions Lead to Less Transferable Features?
Why Do Better Loss Functions Lead to Less Transferable Features?
Simon KornblithTing ChenHonglak LeeMohammad Norouzi
Previous work has proposed many new loss functions and regularizers that improve test accuracy on image classification tasks. However, it is not clear whether these loss functions learn better representations for downstream tasks. This paper studies how the choice of training objective affects the transferability of the hidden representations of convolutional neural networks trained on ImageNet. We show that many objectives lead to statistically significant improvements in ImageNet accuracy over vanilla softmax cross-entropy, but the resulting fixed feature extractors transfer substantially worse to downstream tasks, and the choice of loss has little effect when networks are fully fine-tuned on the new tasks. Using centered kernel alignment to measure similarity between hidden representations of networks, we find that differences among loss functions are apparent only in the last few layers of the network. We delve deeper into representations of the penultimate layer, finding that different objectives and hyperparameter combinations lead to dramatically different levels of class separation. Representations with higher class separation obtain higher accuracy on the original task, but their features are less useful for downstream tasks. Our results suggest there exists a trade-off between learning invariant features for the original task and features relevant for transfer tasks.
aek
421) [2022] TensoRF: Tensorial Radiance Fields
TensoRF: Tensorial Radiance Fields
Anpei ChenZexiang XuAndreas GeigerJingyi YuHao Su
We present TensoRF, a novel approach to model and reconstruct radiance fields. Unlike NeRF that purely uses MLPs, we model the radiance field of a scene as a 4D tensor, which represents a 3D voxel grid with per-voxel multi-channel features. Our central idea is to factorize the 4D scene tensor into multiple compact low-rank tensor components. We demonstrate that applying traditional CP decomposition -- that factorizes tensors into rank-one components with compact vectors -- in our framework leads to improvements over vanilla NeRF. To further boost performance, we introduce a novel vector-matrix (VM) decomposition that relaxes the low-rank constraints for two modes of a tensor and factorizes tensors into compact vector and matrix factors. Beyond superior rendering quality, our models with CP and VM decompositions lead to a significantly lower memory footprint in comparison to previous and concurrent works that directly optimize per-voxel features. Experimentally, we demonstrate that TensoRF with CP decomposition achieves fast reconstruction (<30 min) with better rendering quality and even a smaller model size (<4 MB) compared to NeRF. Moreover, TensoRF with VM decomposition further boosts rendering quality and outperforms previous state-of-the-art methods, while reducing the reconstruction time (<10 min) and retaining a compact model size (<75 MB).
aek
teng

Tuesday 22 March 2022

420) [2016] Aggregated Residual Transformations for Deep Neural Networks
Aggregated Residual Transformations for Deep Neural Networks
Saining XieRoss GirshickPiotr DollárZhuowen TuKaiming He
We present a simple, highly modularized network architecture for image classification. Our network is constructed by repeating a building block that aggregates a set of transformations with the same topology. Our simple design results in a homogeneous, multi-branch architecture that has only a few hyper-parameters to set. This strategy exposes a new dimension, which we call "cardinality" (the size of the set of transformations), as an essential factor in addition to the dimensions of depth and width. On the ImageNet-1K dataset, we empirically show that even under the restricted condition of maintaining complexity, increasing cardinality is able to improve classification accuracy. Moreover, increasing cardinality is more effective than going deeper or wider when we increase the capacity. Our models, named ResNeXt, are the foundations of our entry to the ILSVRC 2016 classification task in which we secured 2nd place. We further investigate ResNeXt on an ImageNet-5K set and the COCO detection set, also showing better results than its ResNet counterpart. The code and models are publicly available online.
pure
419) [2015] Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming HeXiangyu ZhangShaoqing RenJian Sun
Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers---8x deeper than VGG nets but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.
pure
seminar
wit
418) [2021] Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
Ze LiuYutong LinYue CaoHan HuYixuan WeiZheng ZhangStephen LinBaining Guo
This paper presents a new vision Transformer, called Swin Transformer, that capably serves as a general-purpose backbone for computer vision. Challenges in adapting Transformer from language to vision arise from differences between the two domains, such as large variations in the scale of visual entities and the high resolution of pixels in images compared to words in text. To address these differences, we propose a hierarchical Transformer whose representation is computed with \textbf{S}hifted \textbf{win}dows. The shifted windowing scheme brings greater efficiency by limiting self-attention computation to non-overlapping local windows while also allowing for cross-window connection. This hierarchical architecture has the flexibility to model at various scales and has linear computational complexity with respect to image size. These qualities of Swin Transformer make it compatible with a broad range of vision tasks, including image classification (87.3 top-1 accuracy on ImageNet-1K) and dense prediction tasks such as object detection (58.7 box AP and 51.1 mask AP on COCO test-dev) and semantic segmentation (53.5 mIoU on ADE20K val). Its performance surpasses the previous state-of-the-art by a large margin of +2.7 box AP and +2.6 mask AP on COCO, and +3.2 mIoU on ADE20K, demonstrating the potential of Transformer-based models as vision backbones. The hierarchical design and the shifted window approach also prove beneficial for all-MLP architectures. The code and models are publicly available at~\url{https://github.com/microsoft/Swin-Transformer}.
pure
ta

Thursday 17 March 2022

417) [2021] MLP-Mixer: An all-MLP Architecture for Vision
MLP-Mixer: An all-MLP Architecture for Vision
Ilya TolstikhinNeil HoulsbyAlexander KolesnikovLucas BeyerXiaohua ZhaiThomas UnterthinerJessica YungAndreas SteinerDaniel KeysersJakob UszkoreitMario LucicAlexey Dosovitskiy
Convolutional Neural Networks (CNNs) are the go-to model for computer vision. Recently, attention-based networks, such as the Vision Transformer, have also become popular. In this paper we show that while convolutions and attention are both sufficient for good performance, neither of them are necessary. We present MLP-Mixer, an architecture based exclusively on multi-layer perceptrons (MLPs). MLP-Mixer contains two types of layers: one with MLPs applied independently to image patches (i.e. "mixing" the per-location features), and one with MLPs applied across patches (i.e. "mixing" spatial information). When trained on large datasets, or with modern regularization schemes, MLP-Mixer attains competitive scores on image classification benchmarks, with pre-training and inference cost comparable to state-of-the-art models. We hope that these results spark further research beyond the realms of well established CNNs and Transformers.
aek
pure
ta
416) [2022] DeltaCNN: End-to-End CNN Inference of Sparse Frame Differences in Videos
DeltaCNN: End-to-End CNN Inference of Sparse Frame Differences in Videos
Mathias PargerChengcheng TangChristopher D. TwiggCem KeskinRobert WangMarkus Steinberger
Convolutional neural network inference on video data requires powerful hardware for real-time processing. Given the inherent coherence across consecutive frames, large parts of a video typically change little. By skipping identical image regions and truncating insignificant pixel updates, computational redundancy can in theory be reduced significantly. However, these theoretical savings have been difficult to translate into practice, as sparse updates hamper computational consistency and memory access coherence; which are key for efficiency on real hardware. With DeltaCNN, we present a sparse convolutional neural network framework that enables sparse frame-by-frame updates to accelerate video inference in practice. We provide sparse implementations for all typical CNN layers and propagate sparse feature updates end-to-end - without accumulating errors over time. DeltaCNN is applicable to all convolutional neural networks without retraining. To the best of our knowledge, we are the first to significantly outperform the dense reference, cuDNN, in practical settings, achieving speedups of up to 7x with only marginal differences in accuracy.
pure
415) [2022] Kubric: A scalable dataset generator
Kubric: A scalable dataset generator
Klaus GreffFrancois BellettiLucas BeyerCarl DoerschYilun DuDaniel DuckworthDavid J. FleetDan GnanapragasamFlorian GolemoCharles HerrmannThomas KipfAbhijit KunduDmitry LagunIssam Laradji Hsueh-Ti LiuHenning MeyerYishu MiaoDerek NowrouzezahraiCengiz OztireliEtienne PotNoha RadwanDaniel RebainSara SabourMehdi S. M. SajjadiMatan SelaVincent SitzmannAustin StoneDeqing SunSuhani VoraZiyu WangTianhao WuKwang Moo YiFangcheng ZhongAndrea Tagliasacchi
Data is the driving force of machine learning, with the amount and quality of training data often being more important for the performance of a system than architecture and training details. But collecting, processing and annotating real data at scale is difficult, expensive, and frequently raises additional privacy, fairness and legal concerns. Synthetic data is a powerful tool with the potential to address these shortcomings: 1) it is cheap 2) supports rich ground-truth annotations 3) offers full control over data and 4) can circumvent or mitigate problems regarding bias, privacy and licensing. Unfortunately, software tools for effective data generation are less mature than those for architecture design and training, which leads to fragmented generation efforts. To address these problems we introduce Kubric, an open-source Python framework that interfaces with PyBullet and Blender to generate photo-realistic scenes, with rich annotations, and seamlessly scales to large jobs distributed over thousands of machines, and generating TBs of data. We demonstrate the effectiveness of Kubric by presenting a series of 13 different generated datasets for tasks ranging from studying 3D NeRF models to optical flow estimation. We release Kubric, the used assets, all of the generation code, as well as the rendered datasets for reuse and modification.
pure

Wednesday 16 March 2022

414) [2019] Image Generation From Small Datasets via Batch Statistics Adaptation
Image Generation From Small Datasets via Batch Statistics Adaptation
Atsuhiro NoguchiTatsuya Harada
Thanks to the recent development of deep generative models, it is becoming possible to generate high-quality images with both fidelity and diversity. However, the training of such generative models requires a large dataset. To reduce the amount of data required, we propose a new method for transferring prior knowledge of the pre-trained generator, which is trained with a large dataset, to a small dataset in a different domain. Using such prior knowledge, the model can generate images leveraging some common sense that cannot be acquired from a small dataset. In this work, we propose a novel method focusing on the parameters for batch statistics, scale and shift, of the hidden layers in the generator. By training only these parameters in a supervised manner, we achieved stable training of the generator, and our method can generate higher quality images compared to previous methods without collapsing, even when the dataset is small (~100). Our results show that the diversity of the filters acquired in the pre-trained generator is important for the performance on the target domain. Our method makes it possible to add a new class or domain to a pre-trained generator without disturbing the performance on the original domain.
som
413) [2018] Transferring GANs: generating images from limited data
Transferring GANs: generating images from limited data
Yaxing WangChenshen WuLuis HerranzJoost van de WeijerAbel Gonzalez-GarciaBogdan Raducanu
Transferring the knowledge of pretrained networks to new domains by means of finetuning is a widely used practice for applications based on discriminative models. To the best of our knowledge this practice has not been studied within the context of generative deep networks. Therefore, we study domain adaptation applied to image generation with generative adversarial networks. We evaluate several aspects of domain adaptation, including the impact of target domain size, the relative distance between source and target domain, and the initialization of conditional GANs. Our results show that using knowledge from pretrained networks can shorten the convergence time and can significantly improve the quality of the generated images, especially when the target data is limited. We show that these conclusions can also be drawn for conditional GANs even when the pretrained model was trained without conditioning. Our results also suggest that density may be more important than diversity and a dataset with one or few densely sampled classes may be a better source model than more diverse datasets such as ImageNet or Places.
som

Thursday 10 March 2022

412) [2019] MineGAN: effective knowledge transfer from GANs to target domains with few images
MineGAN: effective knowledge transfer from GANs to target domains with few images
Yaxing WangAbel Gonzalez-GarciaDavid BergaLuis HerranzFahad Shahbaz KhanJoost van de Weijer
One of the attractive characteristics of deep neural networks is their ability to transfer knowledge obtained in one domain to other related domains. As a result, high-quality networks can be trained in domains with relatively little training data. This property has been extensively studied for discriminative networks but has received significantly less attention for generative models. Given the often enormous effort required to train GANs, both computationally as well as in the dataset collection, the re-use of pretrained GANs is a desirable objective. We propose a novel knowledge transfer method for generative models based on mining the knowledge that is most beneficial to a specific target domain, either from a single or multiple pretrained GANs. This is done using a miner network that identifies which part of the generative distribution of each pretrained GAN outputs samples closest to the target domain. Mining effectively steers GAN sampling towards suitable regions of the latent space, which facilitates the posterior finetuning and avoids pathologies of other methods such as mode collapse and lack of flexibility. We perform experiments on several complex datasets using various GAN architectures (BigGAN, Progressive GAN) and show that the proposed method, called MineGAN, effectively transfers knowledge to domains with few target images, outperforming existing methods. In addition, MineGAN can successfully transfer knowledge from multiple pretrained GANs. Our code is available at: https://github.com/yaxingwang/MineGAN.
som

Tuesday 08 March 2022

411) ICARUS: A Lightweight Neural Plenoptic Rendering Architectur
ICARUS: A Lightweight Neural Plenoptic Rendering Architectur
Chaolin Rao, Huangjie Yu, Haochuan Wan, Jindong Zhou, Yueyang Zheng, Yu Ma, Anpei Chen, Minye Wu, Binzhe Yuan, Pingqiang Zhou, Xin Lou, Jingyi Yu
The practical deployment of Neural Radiance Field (NeRF) in rendering applications faces several challenges, with the most critical one being low rendering speed on even high-end graphic processing units (GPUs). In this paper, we present ICARUS, a novel lightweight graphics architecture tailored for NeRF rendering. Unlike GPUs using general purpose computing and memory architectures for NeRF, ICARUS executes the complete NeRF pipeline using dedicated plenoptic cores (PLCore) consisting of a positional encoding unit (PEU), a multi-layer perceptron (MLP) engine, and a volume rendering unit (VRU). A PLCore takes in positions \& directions and renders the corresponding pixel colors without any intermediate data going off-chip for temporary storage and exchange, which can be time and power consuming. To implement the most expensive component of NeRF, i.e., the MLP, we transform the fully connected operations to approximated reconfigurable multiple constant multiplications (MCMs), where common subexpressions are shared across different multiplications to improve the computation efficiency. We build a prototype ICARUS using Synopsys HAPS-80 S104, an FPGA-based prototyping system for large-scale integrated circuits and systems. We evaluate the area and power consumption of a PLCore using 40nm LP CMOS process. Working at 300 MHz, a single PLCore occupies 7.59 mm2 and consumes 309.8 mW, translating to 0.174 uJ/sample. Evaluation results show that for NeRF rendering, the energy efficiency of ICARUS is 146 times higher than GPUs. By scaling to a multi-core system, the energy-efficient ICARUS can be deployed in practical edge applications for NeRF-based rendering tasks.
pure

Wednesday 16 February 2022

410) [2021] Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized Codes
Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized Codes
Sam Bond-TaylorPeter HesseyHiroshi SasakiToby P. BreckonChris G. Willcocks
Whilst diffusion probabilistic models can generate high quality image content, key limitations remain in terms of both generating high-resolution imagery and their associated high computational requirements. Recent Vector-Quantized image models have overcome this limitation of image resolution but are prohibitively slow and unidirectional as they generate tokens via element-wise autoregressive sampling from the prior. By contrast, in this paper we propose a novel discrete diffusion probabilistic model prior which enables parallel prediction of Vector-Quantized tokens by using an unconstrained Transformer architecture as the backbone. During training, tokens are randomly masked in an order-agnostic manner and the Transformer learns to predict the original tokens. This parallelism of Vector-Quantized token prediction in turn facilitates unconditional generation of globally consistent high-resolution and diverse imagery at a fraction of the computational expense. In this manner, we can generate image resolutions exceeding that of the original training set samples whilst additionally provisioning per-image likelihood estimates (in a departure from generative adversarial approaches). Our approach achieves state-of-the-art results in terms of Density (LSUN Bedroom: 1.51; LSUN Churches: 1.12; FFHQ: 1.20) and Coverage (LSUN Bedroom: 0.83; LSUN Churches: 0.73; FFHQ: 0.80), and performs competitively on FID (LSUN Bedroom: 3.64; LSUN Churches: 4.07; FFHQ: 6.11) whilst offering advantages in terms of both computation and reduced training set requirements.
409) [2021] EdiBERT, a generative model for image editing
EdiBERT, a generative model for image editing
Thibaut IssenhuthUgo TanielianJérémie MaryDavid Picard
Advances in computer vision are pushing the limits of im-age manipulation, with generative models sampling detailed images on various tasks. However, a specialized model is often developed and trained for each specific task, even though many image edition tasks share similarities. In denoising, inpainting, or image compositing, one always aims at generating a realistic image from a low-quality one. In this paper, we aim at making a step towards a unified approach for image editing. To do so, we propose EdiBERT, a bi-directional transformer trained in the discrete latent space built by a vector-quantized auto-encoder. We argue that such a bidirectional model is suited for image manipulation since any patch can be re-sampled conditionally to the whole image. Using this unique and straightforward training objective, we show that the resulting model matches state-of-the-art performances on a wide variety of tasks: image denoising, image completion, and image composition.

Tuesday 15 February 2022

408) [2022] MaskGIT: Masked Generative Image Transformer
MaskGIT: Masked Generative Image Transformer
Huiwen ChangHan ZhangLu JiangCe LiuWilliam T. Freeman
Generative transformers have experienced rapid popularity growth in the computer vision community in synthesizing high-fidelity and high-resolution images. The best generative transformer models so far, however, still treat an image naively as a sequence of tokens, and decode an image sequentially following the raster scan ordering (i.e. line-by-line). We find this strategy neither optimal nor efficient. This paper proposes a novel image synthesis paradigm using a bidirectional transformer decoder, which we term MaskGIT. During training, MaskGIT learns to predict randomly masked tokens by attending to tokens in all directions. At inference time, the model begins with generating all tokens of an image simultaneously, and then refines the image iteratively conditioned on the previous generation. Our experiments demonstrate that MaskGIT significantly outperforms the state-of-the-art transformer model on the ImageNet dataset, and accelerates autoregressive decoding by up to 64x. Besides, we illustrate that MaskGIT can be easily extended to various image editing tasks, such as inpainting, extrapolation, and image manipulation.
teng

Saturday 12 February 2022

407) [2022] Progressive Distillation for Fast Sampling of Diffusion Models
Progressive Distillation for Fast Sampling of Diffusion Models
Tim SalimansJonathan Ho
Diffusion models have recently shown great promise for generative modeling, outperforming GANs on perceptual quality and autoregressive models at density estimation. A remaining downside is their slow sampling time: generating high quality samples takes many hundreds or thousands of model evaluations. Here we make two contributions to help eliminate this downside: First, we present new parameterizations of diffusion models that provide increased stability when using few sampling steps. Second, we present a method to distill a trained deterministic diffusion sampler, using many steps, into a new diffusion model that takes half as many sampling steps. We then keep progressively applying this distillation procedure to our model, halving the number of required sampling steps each time. On standard image generation benchmarks like CIFAR-10, ImageNet, and LSUN, we start out with state-of-the-art samplers taking as many as 8192 steps, and are able to distill down to models taking as few as 4 steps without losing much perceptual quality; achieving, for example, a FID of 3.0 on CIFAR-10 in 4 steps. Finally, we show that the full progressive distillation procedure does not take more time than it takes to train the original model, thus representing an efficient solution for generative modeling using diffusion at both train and test time.
ta
406) [2022] Instant Neural Graphics Primitives with a Multiresolution Hash Encoding
Instant Neural Graphics Primitives with a Multiresolution Hash Encoding
Thomas MüllerAlex EvansChristoph SchiedAlexander Keller
Neural graphics primitives, parameterized by fully connected neural networks, can be costly to train and evaluate. We reduce this cost with a versatile new input encoding that permits the use of a smaller network without sacrificing quality, thus significantly reducing the number of floating point and memory access operations: a small neural network is augmented by a multiresolution hash table of trainable feature vectors whose values are optimized through stochastic gradient descent. The multiresolution structure allows the network to disambiguate hash collisions, making for a simple architecture that is trivial to parallelize on modern GPUs. We leverage this parallelism by implementing the whole system using fully-fused CUDA kernels with a focus on minimizing wasted bandwidth and compute operations. We achieve a combined speedup of several orders of magnitude, enabling training of high-quality neural graphics primitives in a matter of seconds, and rendering in tens of milliseconds at a resolution of ${1920\!\times\!1080}$.
ta
405) [2021] StyleFlow: Attribute-conditioned Exploration of StyleGAN-Generated Images using Conditional Continuous Normalizing Flows
StyleFlow: Attribute-conditioned Exploration of StyleGAN-Generated Images using Conditional Continuous Normalizing Flows
Rameen AbdalPeihao ZhuNiloy MitraPeter Wonka
High-quality, diverse, and photorealistic images can now be generated by unconditional GANs (e.g., StyleGAN). However, limited options exist to control the generation process using (semantic) attributes, while still preserving the quality of the output. Further, due to the entangled nature of the GAN latent space, performing edits along one attribute can easily result in unwanted changes along other attributes. In this paper, in the context of conditional exploration of entangled latent spaces, we investigate the two sub-problems of attribute-conditioned sampling and attribute-controlled editing. We present StyleFlow as a simple, effective, and robust solution to both the sub-problems by formulating conditional exploration as an instance of conditional continuous normalizing flows in the GAN latent space conditioned by attribute features. We evaluate our method using the face and the car latent space of StyleGAN, and demonstrate fine-grained disentangled edits along various attributes on both real photographs and StyleGAN generated images. For example, for faces, we vary camera pose, illumination variation, expression, facial hair, gender, and age. Finally, via extensive qualitative and quantitative comparisons, we demonstrate the superiority of StyleFlow to other concurrent works.
ta

Wednesday 19 January 2022

404) [2021] A Conditional Point Diffusion-Refinement Paradigm for 3D Point Cloud Completion
A Conditional Point Diffusion-Refinement Paradigm for 3D Point Cloud Completion
Zhaoyang LyuZhifeng KongXudong XuLiang PanDahua Lin
3D point cloud is an important 3D representation for capturing real world 3D objects. However, real-scanned 3D point clouds are often incomplete, and it is important to recover complete point clouds for downstream applications. Most existing point cloud completion methods use Chamfer Distance (CD) loss for training. The CD loss estimates correspondences between two point clouds by searching nearest neighbors, which does not capture the overall point density distribution on the generated shape, and therefore likely leads to non-uniform point cloud generation. To tackle this problem, we propose a novel Point Diffusion-Refinement (PDR) paradigm for point cloud completion. PDR consists of a Conditional Generation Network (CGNet) and a ReFinement Network (RFNet). The CGNet uses a conditional generative model called the denoising diffusion probabilistic model (DDPM) to generate a coarse completion conditioned on the partial observation. DDPM establishes a one-to-one pointwise mapping between the generated point cloud and the uniform ground truth, and then optimizes the mean squared error loss to realize uniform generation. The RFNet refines the coarse output of the CGNet and further improves quality of the completed point cloud. Furthermore, we develop a novel dual-path architecture for both networks. The architecture can (1) effectively and efficiently extract multi-level features from partially observed point clouds to guide completion, and (2) accurately manipulate spatial locations of 3D points to obtain smooth surfaces and sharp details. Extensive experimental results on various benchmark datasets show that our PDR paradigm outperforms previous state-of-the-art methods for point cloud completion. Remarkably, with the help of the RFNet, we can accelerate the iterative generation process of the DDPM by up to 50 times without much performance drop.
403) [2021] Score-Based Point Cloud Denoising
Score-Based Point Cloud Denoising
Shitong LuoWei Hu
Point clouds acquired from scanning devices are often perturbed by noise, which affects downstream tasks such as surface reconstruction and analysis. The distribution of a noisy point cloud can be viewed as the distribution of a set of noise-free samples $p(x)$ convolved with some noise model $n$, leading to $(p * n)(x)$ whose mode is the underlying clean surface. To denoise a noisy point cloud, we propose to increase the log-likelihood of each point from $p * n$ via gradient ascent -- iteratively updating each point's position. Since $p * n$ is unknown at test-time, and we only need the score (i.e., the gradient of the log-probability function) to perform gradient ascent, we propose a neural network architecture to estimate the score of $p * n$ given only noisy point clouds as input. We derive objective functions for training the network and develop a denoising algorithm leveraging on the estimated scores. Experiments demonstrate that the proposed model outperforms state-of-the-art methods under a variety of noise models, and shows the potential to be applied in other tasks such as point cloud upsampling. The code is available at \url{https://github.com/luost26/score-denoise}.
402) [2021] Diffusion Probabilistic Models for 3D Point Cloud Generation
Diffusion Probabilistic Models for 3D Point Cloud Generation
Shitong LuoWei Hu
We present a probabilistic model for point cloud generation, which is fundamental for various 3D vision tasks such as shape completion, upsampling, synthesis and data augmentation. Inspired by the diffusion process in non-equilibrium thermodynamics, we view points in point clouds as particles in a thermodynamic system in contact with a heat bath, which diffuse from the original distribution to a noise distribution. Point cloud generation thus amounts to learning the reverse diffusion process that transforms the noise distribution to the distribution of a desired shape. Specifically, we propose to model the reverse diffusion process for point clouds as a Markov chain conditioned on certain shape latent. We derive the variational bound in closed form for training and provide implementations of the model. Experimental results demonstrate that our model achieves competitive performance in point cloud generation and auto-encoding. The code is available at \url{https://github.com/luost26/diffusion-point-cloud}.
401) [2021] Self-Supervised Pretraining of 3D Features on any Point-Cloud
Self-Supervised Pretraining of 3D Features on any Point-Cloud
Zaiwei ZhangRohit GirdharArmand JoulinIshan Misra
Pretraining on large labeled datasets is a prerequisite to achieve good performance in many computer vision tasks like 2D object recognition, video classification etc. However, pretraining is not widely used for 3D recognition tasks where state-of-the-art methods train models from scratch. A primary reason is the lack of large annotated datasets because 3D data is both difficult to acquire and time consuming to label. We present a simple self-supervised pertaining method that can work with any 3D data - single or multiview, indoor or outdoor, acquired by varied sensors, without 3D registration. We pretrain standard point cloud and voxel based model architectures, and show that joint pretraining further improves performance. We evaluate our models on 9 benchmarks for object detection, semantic segmentation, and object classification, where they achieve state-of-the-art results and can outperform supervised pretraining. We set a new state-of-the-art for object detection on ScanNet (69.0% mAP) and SUNRGBD (63.5% mAP). Our pretrained models are label efficient and improve performance for classes with few examples.
400) Learning Transferable Features for Point Cloud Detection via 3D Contrastive Co-training
Learning Transferable Features for Point Cloud Detection via 3D Contrastive Co-training
399) [2021] Self-Supervised Learning on 3D Point Clouds by Learning Discrete Generative Models
Self-Supervised Learning on 3D Point Clouds by Learning Discrete Generative Models
Benjamin EckartWentao YuanChao LiuJan Kautz
398) [2021] Shape Self-Correction for Unsupervised Point Cloud Understanding
Shape Self-Correction for Unsupervised Point Cloud Understanding
Ye ChenJinxian LiuBingbing NiHang WangJiancheng YangNing LiuTeng LiQi Tian
397) [2021] Progressive Seed Generation Auto-encoder for Unsupervised Point Cloud Learning
Progressive Seed Generation Auto-encoder for Unsupervised Point Cloud Learning
Juyoung YangPyunghwan AhnDoyeon KimHaeil LeeJunmo Kim
With the development of 3D scanning technologies, 3D vision tasks have become a popular research area. Owing to the large amount of data acquired by sensors, unsupervised learning is essential for understanding and utilizing point clouds without an expensive annotation process. In this paper, we propose a novel framework and an effective auto-encoder architecture named "PSG-Net" for reconstruction-based learning of point clouds. Unlike existing studies that used fixed or random 2D points, our framework generates input-dependent point-wise features for the latent point set. PSG-Net uses the encoded input to produce point-wise features through the seed generation module and extracts richer features in multiple stages with gradually increasing resolution by applying the seed feature propagation module progressively. We prove the effectiveness of PSG-Net experimentally; PSG-Net shows state-of-the-art performances in point cloud reconstruction and unsupervised classification, and achieves comparable performance to counterpart methods in supervised completion.
396) [2020] Global-Local Bidirectional Reasoning for Unsupervised Representation Learning of 3D Point Clouds
Global-Local Bidirectional Reasoning for Unsupervised Representation Learning of 3D Point Clouds
Yongming RaoJiwen LuJie Zhou
Local and global patterns of an object are closely related. Although each part of an object is incomplete, the underlying attributes about the object are shared among all parts, which makes reasoning the whole object from a single part possible. We hypothesize that a powerful representation of a 3D object should model the attributes that are shared between parts and the whole object, and distinguishable from other objects. Based on this hypothesis, we propose to learn point cloud representation by bidirectional reasoning between the local structures at different abstraction hierarchies and the global shape without human supervision. Experimental results on various benchmark datasets demonstrate the unsupervisedly learned representation is even better than supervised representation in discriminative power, generalization ability, and robustness. We show that unsupervisedly trained point cloud models can outperform their supervised counterparts on downstream classification tasks. Most notably, by simply increasing the channel width of an SSG PointNet++, our unsupervised model surpasses the state-of-the-art supervised methods on both synthetic and real-world 3D object classification datasets. We expect our observations to offer a new perspective on learning better representation from data structures instead of human annotations for point cloud understanding.
395) [2020] PointContrast: Unsupervised Pre-training for 3D Point Cloud Understanding
PointContrast: Unsupervised Pre-training for 3D Point Cloud Understanding
Saining XieJiatao GuDemi GuoCharles R. QiLeonidas J. GuibasOr Litany
Arguably one of the top success stories of deep learning is transfer learning. The finding that pre-training a network on a rich source set (eg., ImageNet) can help boost performance once fine-tuned on a usually much smaller target set, has been instrumental to many applications in language and vision. Yet, very little is known about its usefulness in 3D point cloud understanding. We see this as an opportunity considering the effort required for annotating data in 3D. In this work, we aim at facilitating research on 3D representation learning. Different from previous works, we focus on high-level scene understanding tasks. To this end, we select a suite of diverse datasets and tasks to measure the effect of unsupervised pre-training on a large source set of 3D scenes. Our findings are extremely encouraging: using a unified triplet of architecture, source dataset, and contrastive loss for pre-training, we achieve improvement over recent best results in segmentation and detection across 6 different benchmarks for indoor and outdoor, real and synthetic datasets -- demonstrating that the learned representation can generalize across domains. Furthermore, the improvement was similar to supervised pre-training, suggesting that future efforts should favor scaling data collection over more detailed annotation. We hope these findings will encourage more research on unsupervised pretext task design for 3D deep learning.

Tuesday 18 January 2022

394) Instant Neural Graphics Primitives with a Multiresolution Hash Encoding
Instant Neural Graphics Primitives with a Multiresolution Hash Encoding
Instant Neural Graphics Primitives with a Multiresolution Hash Encoding
pure
393)

Thursday 13 January 2022

392) [2021] InfoNeRF: Ray Entropy Minimization for Few-Shot Neural Volume Rendering
InfoNeRF: Ray Entropy Minimization for Few-Shot Neural Volume Rendering
Mijeong KimSeonguk SeoBohyung Han
We present an information-theoretic regularization technique for few-shot novel view synthesis based on neural implicit representation. The proposed approach minimizes potential reconstruction inconsistency that happens due to insufficient viewpoints by imposing the entropy constraint of the density in each ray. In addition, to alleviate the potential degenerate issue when all training images are acquired from almost redundant viewpoints, we further incorporate the spatially smoothness constraint into the estimated images by restricting information gains from a pair of rays with slightly different viewpoints. The main idea of our algorithm is to make reconstructed scenes compact along individual rays and consistent across rays in the neighborhood. The proposed regularizers can be plugged into most of existing neural volume rendering techniques based on NeRF in a straightforward way. Despite its simplicity, we achieve consistently improved performance compared to existing neural view synthesis methods by large margins on multiple standard benchmarks. Our project website is available at \url{http://cvlab.snu.ac.kr/research/InfoNeRF}.
pure

Wednesday 12 January 2022

391) [2022] Head2Toe: Utilizing Intermediate Representations for Better Transfer Learning
Head2Toe: Utilizing Intermediate Representations for Better Transfer Learning
Utku EvciVincent DumoulinHugo LarochelleMichael C. Mozer
Transfer-learning methods aim to improve performance in a data-scarce target domain using a model pretrained on a data-rich source domain. A cost-efficient strategy, linear probing, involves freezing the source model and training a new classification head for the target domain. This strategy is outperformed by a more costly but state-of-the-art method -- fine-tuning all parameters of the source model to the target domain -- possibly because fine-tuning allows the model to leverage useful information from intermediate layers which is otherwise discarded by the later pretrained layers. We explore the hypothesis that these intermediate layers might be directly exploited. We propose a method, Head-to-Toe probing (Head2Toe), that selects features from all layers of the source model to train a classification head for the target-domain. In evaluations on the VTAB-1k, Head2Toe matches performance obtained with fine-tuning on average while reducing training and storage cost hundred folds or more, but critically, for out-of-distribution transfer, Head2Toe outperforms fine-tuning.
aek

Thursday 23 December 2021

390) [2021] Light Field Neural Rendering
Light Field Neural Rendering
Mohammed SuhailCarlos EstevesLeonid SigalAmeesh Makadia
Classical light field rendering for novel view synthesis can accurately reproduce view-dependent effects such as reflection, refraction, and translucency, but requires a dense view sampling of the scene. Methods based on geometric reconstruction need only sparse views, but cannot accurately model non-Lambertian effects. We introduce a model that combines the strengths and mitigates the limitations of these two directions. By operating on a four-dimensional representation of the light field, our model learns to represent view-dependent effects accurately. By enforcing geometric constraints during training and inference, the scene geometry is implicitly learned from a sparse set of views. Concretely, we introduce a two-stage transformer-based model that first aggregates features along epipolar lines, then aggregates features along reference views to produce the color of a target ray. Our model outperforms the state-of-the-art on multiple forward-facing and 360{\deg} datasets, with larger margins on scenes with severe view-dependent variations.
aek
pure

Wednesday 22 December 2021

389) [2021] StyleSDF: High-Resolution 3D-Consistent Image and Geometry Generation
StyleSDF: High-Resolution 3D-Consistent Image and Geometry Generation
Roy Or-ElXuan LuoMengyi ShanEli ShechtmanJeong Joon ParkIra Kemelmacher-Shlizerman
We introduce a high resolution, 3D-consistent image and shape generation technique which we call StyleSDF. Our method is trained on single-view RGB data only, and stands on the shoulders of StyleGAN2 for image generation, while solving two main challenges in 3D-aware GANs: 1) high-resolution, view-consistent generation of the RGB images, and 2) detailed 3D shape. We achieve this by merging a SDF-based 3D representation with a style-based 2D generator. Our 3D implicit network renders low-resolution feature maps, from which the style-based network generates view-consistent, 1024x1024 images. Notably, our SDF-based 3D modeling defines detailed 3D surfaces, leading to consistent volume rendering. Our method shows higher quality results compared to state of the art in terms of visual and geometric quality.
aek

Monday 20 December 2021

388) Leveraging Batch Normalization for Vision Transformers
Leveraging Batch Normalization for Vision Transformers
Zhuliang YaoYue CaoYutong LinZe LiuZheng ZhangHan Hu
Transformer-based vision architectures have attracted great attention because of the strong performance over the convolutional neural networks (CNNs). Inherited from the NLP tasks, the architectures take Layer Normalization (LN) as a default normalization technique. On the other side, previous vision models, i.e., CNNs, treat Batch Normalization (BN) as a de facto standard, with the merits of faster inference than other normalization layers due to an avoidance of calculating the mean and variance statistics during inference, as well as better regularization effects during training. In this paper, we aim to introduce Batch Normalization to Transformer-based vision architectures. Our initial exploration reveals frequent crashes in model training when directly replacing all LN layers with BN, contributing to the un-normalized feed forward network (FFN) blocks. We therefore propose to add a BN layer in-between the two linear layers in the FFN block where stabilized training statistics are observed, resulting in a pure BN-based architecture. Our experiments proved that our resulting approach is as effective as the LN-based counterpart and is about 20% faster.
aek
387) [2021] Neural Flows: Efficient Alternative to Neural ODEs
Neural Flows: Efficient Alternative to Neural ODEs
Marin BilošJohanna SommerSyama Sundar RangapuramTim JanuschowskiStephan Günnemann
Neural ordinary differential equations describe how values change in time. This is the reason why they gained importance in modeling sequential data, especially when the observations are made at irregular intervals. In this paper we propose an alternative by directly modeling the solution curves - the flow of an ODE - with a neural network. This immediately eliminates the need for expensive numerical solvers while still maintaining the modeling capability of neural ODEs. We propose several flow architectures suitable for different applications by establishing precise conditions on when a function defines a valid flow. Apart from computational efficiency, we also provide empirical evidence of favorable generalization performance via applications in time series modeling, forecasting, and density estimation.
aek
386) [2021] More Control for Free! Image Synthesis with Semantic Diffusion Guidance
More Control for Free! Image Synthesis with Semantic Diffusion Guidance
Xihui LiuDong Huk ParkSamaneh AzadiGong ZhangArman ChopikyanYuxiao HuHumphrey ShiAnna RohrbachTrevor Darrell
Controllable image synthesis models allow creation of diverse images based on text instructions or guidance from an example image. Recently, denoising diffusion probabilistic models have been shown to generate more realistic imagery than prior methods, and have been successfully demonstrated in unconditional and class-conditional settings. We explore fine-grained, continuous control of this model class, and introduce a novel unified framework for semantic diffusion guidance, which allows either language or image guidance, or both. Guidance is injected into a pretrained unconditional diffusion model using the gradient of image-text or image matching scores. We explore CLIP-based textual guidance as well as both content and style-based image guidance in a unified form. Our text-guided synthesis approach can be applied to datasets without associated text annotations. We conduct experiments on FFHQ and LSUN datasets, and show results on fine-grained text-guided image synthesis, synthesis of images related to a style or content example image, and examples with both textual and image guidance.
aek

Thursday 16 December 2021

385) [2021] Palette: Image-to-Image Diffusion Models
Palette: Image-to-Image Diffusion Models
Chitwan SahariaWilliam ChanHuiwen ChangChris A. LeeJonathan HoTim SalimansDavid J. FleetMohammad Norouzi
We introduce Palette, a simple and general framework for image-to-image translation using conditional diffusion models. On four challenging image-to-image translation tasks (colorization, inpainting, uncropping, and JPEG decompression), Palette outperforms strong GAN and regression baselines, and establishes a new state of the art. This is accomplished without task-specific hyper-parameter tuning, architecture customization, or any auxiliary loss, demonstrating a desirable degree of generality and flexibility. We uncover the impact of using $L_2$ vs. $L_1$ loss in the denoising diffusion objective on sample diversity, and demonstrate the importance of self-attention through empirical architecture studies. Importantly, we advocate a unified evaluation protocol based on ImageNet, and report several sample quality scores including FID, Inception Score, Classification Accuracy of a pre-trained ResNet-50, and Perceptual Distance against reference images for various baselines. We expect this standardized evaluation protocol to play a critical role in advancing image-to-image translation research. Finally, we show that a single generalist Palette model trained on 3 tasks (colorization, inpainting, JPEG decompression) performs as well or better than task-specific specialist counterparts.
aek

Wednesday 08 December 2021

384) [2021] HyperInverter: Improving StyleGAN Inversion via Hypernetwork
HyperInverter: Improving StyleGAN Inversion via Hypernetwork
Tan M. DinhAnh Tuan TranRang NguyenBinh-Son Hua
Real-world image manipulation has achieved fantastic progress in recent years as a result of the exploration and utilization of GAN latent spaces. GAN inversion is the first step in this pipeline, which aims to map the real image to the latent code faithfully. Unfortunately, the majority of existing GAN inversion methods fail to meet at least one of the three requirements listed below: high reconstruction quality, editability, and fast inference. We present a novel two-phase strategy in this research that fits all requirements at the same time. In the first phase, we train an encoder to map the input image to StyleGAN2 $\mathcal{W}$-space, which was proven to have excellent editability but lower reconstruction quality. In the second phase, we supplement the reconstruction ability in the initial phase by leveraging a series of hypernetworks to recover the missing information during inversion. These two steps complement each other to yield high reconstruction quality thanks to the hypernetwork branch and excellent editability due to the inversion done in the $\mathcal{W}$-space. Our method is entirely encoder-based, resulting in extremely fast inference. Extensive experiments on two challenging datasets demonstrate the superiority of our method.
383) [2021] Score-based Generative Modeling in Latent Space
Score-based Generative Modeling in Latent Space
Arash VahdatKarsten KreisJan Kautz
Score-based generative models (SGMs) have recently demonstrated impressive results in terms of both sample quality and distribution coverage. However, they are usually applied directly in data space and often require thousands of network evaluations for sampling. Here, we propose the Latent Score-based Generative Model (LSGM), a novel approach that trains SGMs in a latent space, relying on the variational autoencoder framework. Moving from data to latent space allows us to train more expressive generative models, apply SGMs to non-continuous data, and learn smoother SGMs in a smaller space, resulting in fewer network evaluations and faster sampling. To enable training LSGMs end-to-end in a scalable and stable manner, we (i) introduce a new score-matching objective suitable to the LSGM setting, (ii) propose a novel parameterization of the score function that allows SGM to focus on the mismatch of the target distribution with respect to a simple Normal one, and (iii) analytically derive multiple techniques for variance reduction of the training objective. LSGM obtains a state-of-the-art FID score of 2.10 on CIFAR-10, outperforming all existing generative results on this dataset. On CelebA-HQ-256, LSGM is on a par with previous SGMs in sample quality while outperforming them in sampling time by two orders of magnitude. In modeling binary images, LSGM achieves state-of-the-art likelihood on the binarized OMNIGLOT dataset. Our project page and code can be found at https://nvlabs.github.io/LSGM .
382) [2021] Controllable and Compositional Generation with Latent-Space Energy-Based Models
Controllable and Compositional Generation with Latent-Space Energy-Based Models
Weili NieArash VahdatAnima Anandkumar
Controllable generation is one of the key requirements for successful adoption of deep generative models in real-world applications, but it still remains as a great challenge. In particular, the compositional ability to generate novel concept combinations is out of reach for most current models. In this work, we use energy-based models (EBMs) to handle compositional generation over a set of attributes. To make them scalable to high-resolution image generation, we introduce an EBM in the latent space of a pre-trained generative model such as StyleGAN. We propose a novel EBM formulation representing the joint distribution of data and attributes together, and we show how sampling from it is formulated as solving an ordinary differential equation (ODE). Given a pre-trained generator, all we need for controllable generation is to train an attribute classifier. Sampling with ODEs is done efficiently in the latent space and is robust to hyperparameters. Thus, our method is simple, fast to train, and efficient to sample. Experimental results show that our method outperforms the state-of-the-art in both conditional sampling and sequential editing. In compositional generation, our method excels at zero-shot generation of unseen attribute combinations. Also, by composing energy functions with logical operators, this work is the first to achieve such compositionality in generating photo-realistic images of resolution 1024x1024. Code is available at https://github.com/NVlabs/LACE.
381) [2021] PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering
PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering
Yurui RenGe LiYuanqi ChenThomas H. LiShan Liu
Generating portrait images by controlling the motions of existing faces is an important task of great consequence to social media industries. For easy use and intuitive control, semantically meaningful and fully disentangled parameters should be used as modifications. However, many existing techniques do not provide such fine-grained controls or use indirect editing methods i.e. mimic motions of other individuals. In this paper, a Portrait Image Neural Renderer (PIRenderer) is proposed to control the face motions with the parameters of three-dimensional morphable face models (3DMMs). The proposed model can generate photo-realistic portrait images with accurate movements according to intuitive modifications. Experiments on both direct and indirect editing tasks demonstrate the superiority of this model. Meanwhile, we further extend this model to tackle the audio-driven facial reenactment task by extracting sequential motions from audio inputs. We show that our model can generate coherent videos with convincing movements from only a single reference image and a driving audio stream. Our source code is available at https://github.com/RenYurui/PIRender.
380) [2021] Label-Efficient Semantic Segmentation with Diffusion Models
Label-Efficient Semantic Segmentation with Diffusion Models
Dmitry BaranchukIvan RubachevAndrey VoynovValentin KhrulkovArtem Babenko
Denoising diffusion probabilistic models have recently received much research attention since they outperform alternative approaches, such as GANs, and currently provide state-of-the-art generative performance. The superior performance of diffusion models has made them an appealing tool in several applications, including inpainting, super-resolution, and semantic editing. In this paper, we demonstrate that diffusion models can also serve as an instrument for semantic segmentation, especially in the setup when labeled data is scarce. In particular, for several pretrained diffusion models, we investigate the intermediate activations from the networks that perform the Markov step of the reverse diffusion process. We show that these activations effectively capture the semantic information from an input image and appear to be excellent pixel-level representations for the segmentation problem. Based on these observations, we describe a simple segmentation method, which can work even if only a few training images are provided. Our approach significantly outperforms the existing alternatives on several datasets for the same amount of human supervision.
aek

Monday 06 December 2021

379) [2021] Volume Rendering of Neural Implicit Surfaces
Volume Rendering of Neural Implicit Surfaces
Lior YarivJiatao GuYoni KastenYaron Lipman
Neural volume rendering became increasingly popular recently due to its success in synthesizing novel views of a scene from a sparse set of input images. So far, the geometry learned by neural volume rendering techniques was modeled using a generic density function. Furthermore, the geometry itself was extracted using an arbitrary level set of the density function leading to a noisy, often low fidelity reconstruction. The goal of this paper is to improve geometry representation and reconstruction in neural volume rendering. We achieve that by modeling the volume density as a function of the geometry. This is in contrast to previous work modeling the geometry as a function of the volume density. In more detail, we define the volume density function as Laplace's cumulative distribution function (CDF) applied to a signed distance function (SDF) representation. This simple density representation has three benefits: (i) it provides a useful inductive bias to the geometry learned in the neural volume rendering process; (ii) it facilitates a bound on the opacity approximation error, leading to an accurate sampling of the viewing ray. Accurate sampling is important to provide a precise coupling of geometry and radiance; and (iii) it allows efficient unsupervised disentanglement of shape and appearance in volume rendering. Applying this new density representation to challenging scene multiview datasets produced high quality geometry reconstructions, outperforming relevant baselines. Furthermore, switching shape and appearance between scenes is possible due to the disentanglement of the two.
pure

Thursday 02 December 2021

378) [2021] 3D Photo Stylization: Learning to Generate Stylized Novel Views from a Single Image
3D Photo Stylization: Learning to Generate Stylized Novel Views from a Single Image
Fangzhou MuJian WangYicheng WuYin Li
Visual content creation has spurred a soaring interest given its applications in mobile photography and AR / VR. Style transfer and single-image 3D photography as two representative tasks have so far evolved independently. In this paper, we make a connection between the two, and address the challenging task of 3D photo stylization - generating stylized novel views from a single image given an arbitrary style. Our key intuition is that style transfer and view synthesis have to be jointly modeled for this task. To this end, we propose a deep model that learns geometry-aware content features for stylization from a point cloud representation of the scene, resulting in high-quality stylized images that are consistent across views. Further, we introduce a novel training protocol to enable the learning using only 2D images. We demonstrate the superiority of our method via extensive qualitative and quantitative studies, and showcase key applications of our method in light of the growing demand for 3D content creation from 2D image assets.
377) [2021] VaxNeRF: Revisiting the Classic for Voxel-Accelerated Neural Radiance Field
VaxNeRF: Revisiting the Classic for Voxel-Accelerated Neural Radiance Field
Naruya KondoYuya IkedaAndrea TagliasacchiYutaka MatsuoYoichi OchiaiShixiang Shane Gu
Neural Radiance Field (NeRF) is a popular method in data-driven 3D reconstruction. Given its simplicity and high quality rendering, many NeRF applications are being developed. However, NeRF's big limitation is its slow speed. Many attempts are made to speeding up NeRF training and inference, including intricate code-level optimization and caching, use of sophisticated data structures, and amortization through multi-task and meta learning. In this work, we revisit the basic building blocks of NeRF through the lens of classic techniques before NeRF. We propose Voxel-Accelearated NeRF (VaxNeRF), integrating NeRF with visual hull, a classic 3D reconstruction technique only requiring binary foreground-background pixel labels per image. Visual hull, which can be optimized in about 10 seconds, can provide coarse in-out field separation to omit substantial amounts of network evaluations in NeRF. We provide a clean fully-pythonic, JAX-based implementation on the popular JaxNeRF codebase, consisting of only about 30 lines of code changes and a modular visual hull subroutine, and achieve about 2-8x faster learning on top of the highly-performative JaxNeRF baseline with zero degradation in rendering quality. With sufficient compute, this effectively brings down full NeRF training from hours to 30 minutes. We hope VaxNeRF -- a careful combination of a classic technique with a deep method (that arguably replaced it) -- can empower and accelerate new NeRF extensions and applications, with its simplicity, portability, and reliable performance gains. Codes are available at https://github.com/naruya/VaxNeRF .
376) [2021] Urban Radiance Fields
Urban Radiance Fields
Konstantinos RematasAndrew LiuPratul P. SrinivasanJonathan T. BarronAndrea TagliasacchiThomas FunkhouserVittorio Ferrari
The goal of this work is to perform 3D reconstruction and novel view synthesis from data captured by scanning platforms commonly deployed for world mapping in urban outdoor environments (e.g., Street View). Given a sequence of posed RGB images and lidar sweeps acquired by cameras and scanners moving through an outdoor scene, we produce a model from which 3D surfaces can be extracted and novel RGB images can be synthesized. Our approach extends Neural Radiance Fields, which has been demonstrated to synthesize realistic novel images for small scenes in controlled settings, with new methods for leveraging asynchronously captured lidar data, for addressing exposure variation between captured images, and for leveraging predicted image segmentations to supervise densities on rays pointing at the sky. Each of these three extensions provides significant performance improvements in experiments on Street View data. Our system produces state-of-the-art 3D surface reconstructions and synthesizes higher quality novel views in comparison to both traditional methods (e.g.~COLMAP) and recent neural representations (e.g.~Mip-NeRF).
375) [2021] End-to-End Referring Video Object Segmentation with Multimodal Transformers
End-to-End Referring Video Object Segmentation with Multimodal Transformers
Adam BotachEvgenii ZheltonozhskiiChaim Baskin
The referring video object segmentation task (RVOS) involves segmentation of a text-referred object instance in the frames of a given video. Due to the complex nature of this multimodal task, which combines text reasoning, video understanding, instance segmentation and tracking, existing approaches typically rely on sophisticated pipelines in order to tackle it. In this paper, we propose a simple Transformer-based approach to RVOS. Our framework, termed Multimodal Tracking Transformer (MTTR), models the RVOS task as a sequence prediction problem. Following recent advancements in computer vision and natural language processing, MTTR is based on the realization that video and text can both be processed together effectively and elegantly by a single multimodal Transformer model. MTTR is end-to-end trainable, free of text-related inductive bias components and requires no additional mask-refinement post-processing steps. As such, it simplifies the RVOS pipeline considerably compared to existing methods. Evaluation on standard benchmarks reveals that MTTR significantly outperforms previous art across multiple metrics. In particular, MTTR shows impressive +5.7 and +5.0 mAP gains on the A2D-Sentences and JHMDB-Sentences datasets respectively, while processing 76 frames per second. In addition, we report strong results on the public validation set of Refer-YouTube-VOS, a more challenging RVOS dataset that has yet to receive the attention of researchers. The code to reproduce our experiments is available at https://github.com/mttr2021/MTTR
374) [2021] CRIS: CLIP-Driven Referring Image Segmentation
CRIS: CLIP-Driven Referring Image Segmentation
Zhaoqing WangYu LuQiang LiXunqiang TaoYandong GuoMingming GongTongliang Liu
Referring image segmentation aims to segment a referent via a natural linguistic expression.Due to the distinct data properties between text and image, it is challenging for a network to well align text and pixel-level features. Existing approaches use pretrained models to facilitate learning, yet separately transfer the language/vision knowledge from pretrained models, ignoring the multi-modal corresponding information. Inspired by the recent advance in Contrastive Language-Image Pretraining (CLIP), in this paper, we propose an end-to-end CLIP-Driven Referring Image Segmentation framework (CRIS). To transfer the multi-modal knowledge effectively, CRIS resorts to vision-language decoding and contrastive learning for achieving the text-to-pixel alignment. More specifically, we design a vision-language decoder to propagate fine-grained semantic information from textual representations to each pixel-level activation, which promotes consistency between the two modalities. In addition, we present text-to-pixel contrastive learning to explicitly enforce the text feature similar to the related pixel-level features and dissimilar to the irrelevances. The experimental results on three benchmark datasets demonstrate that our proposed framework significantly outperforms the state-of-the-art performance without any post-processing. The code will be released.
373) [2021] NeRFReN: Neural Radiance Fields with Reflections
NeRFReN: Neural Radiance Fields with Reflections
Yuan-Chen GuoDi KangLinchao BaoYu HeSong-Hai Zhang
Neural Radiance Fields (NeRF) has achieved unprecedented view synthesis quality using coordinate-based neural scene representations. However, NeRF's view dependency can only handle simple reflections like highlights but cannot deal with complex reflections such as those from glass and mirrors. In these scenarios, NeRF models the virtual image as real geometries which leads to inaccurate depth estimation, and produces blurry renderings when the multi-view consistency is violated as the reflected objects may only be seen under some of the viewpoints. To overcome these issues, we introduce NeRFReN, which is built upon NeRF to model scenes with reflections. Specifically, we propose to split a scene into transmitted and reflected components, and model the two components with separate neural radiance fields. Considering that this decomposition is highly under-constrained, we exploit geometric priors and apply carefully-designed training strategies to achieve reasonable decomposition results. Experiments on various self-captured scenes show that our method achieves high-quality novel view synthesis and physically sound depth estimation results while enabling scene editing applications. Code and data will be released.
372) [2021] FENeRF: Face Editing in Neural Radiance Fields
FENeRF: Face Editing in Neural Radiance Fields
Jingxiang SunXuan WangYong ZhangXiaoyu LiQi ZhangYebin LiuJue Wang
Previous portrait image generation methods roughly fall into two categories: 2D GANs and 3D-aware GANs. 2D GANs can generate high fidelity portraits but with low view consistency. 3D-aware GAN methods can maintain view consistency but their generated images are not locally editable. To overcome these limitations, we propose FENeRF, a 3D-aware generator that can produce view-consistent and locally-editable portrait images. Our method uses two decoupled latent codes to generate corresponding facial semantics and texture in a spatial aligned 3D volume with shared geometry. Benefiting from such underlying 3D representation, FENeRF can jointly render the boundary-aligned image and semantic mask and use the semantic mask to edit the 3D volume via GAN inversion. We further show such 3D representation can be learned from widely available monocular image and semantic mask pairs. Moreover, we reveal that joint learning semantics and texture helps to generate finer geometry. Our experiments demonstrate that FENeRF outperforms state-of-the-art methods in various face editing tasks.
371) [2021] SketchEdit: Mask-Free Local Image Manipulation with Partial Sketches
SketchEdit: Mask-Free Local Image Manipulation with Partial Sketches
Yu ZengZhe LinVishal M. Patel
Sketch-based image manipulation is an interactive image editing task to modify an image based on input sketches from users. Existing methods typically formulate this task as a conditional inpainting problem, which requires users to draw an extra mask indicating the region to modify in addition to sketches. The masked regions are regarded as holes and filled by an inpainting model conditioned on the sketch. With this formulation, paired training data can be easily obtained by randomly creating masks and extracting edges or contours. Although this setup simplifies data preparation and model design, it complicates user interaction and discards useful information in masked regions. To this end, we investigate a new paradigm of sketch-based image manipulation: mask-free local image manipulation, which only requires sketch inputs from users and utilizes the entire original image. Given an image and sketch, our model automatically predicts the target modification region and encodes it into a structure agnostic style vector. A generator then synthesizes the new image content based on the style vector and sketch. The manipulated image is finally produced by blending the generator output into the modification region of the original image. Our model can be trained in a self-supervised fashion by learning the reconstruction of an image region from the style vector and sketch. The proposed method offers simpler and more intuitive user workflows for sketch-based image manipulation and provides better results than previous approaches. More results, code and interactive demo will be available at \url{https://zengxianyu.github.io/sketchedit}.

Wednesday 01 December 2021

370) Diffusion Autoencoders: Toward a Meaningful and Decodable Representation | Abstract
Diffusion Autoencoders: Toward a Meaningful and Decodable Representation | Abstract
aek
369) [2021] Conditional Image Generation with Score-Based Diffusion Models
Conditional Image Generation with Score-Based Diffusion Models
Georgios BatzolisJan StanczukCarola-Bibiane SchönliebChristian Etmann
Score-based diffusion models have emerged as one of the most promising frameworks for deep generative modelling. In this work we conduct a systematic comparison and theoretical analysis of different approaches to learning conditional probability distributions with score-based diffusion models. In particular, we prove results which provide a theoretical justification for one of the most successful estimators of the conditional score. Moreover, we introduce a multi-speed diffusion framework, which leads to a new estimator for the conditional score, performing on par with previous state-of-the-art approaches. Our theoretical and experimental findings are accompanied by an open source library MSDiff which allows for application and further research of multi-speed diffusion models.
aek
368) [2021] NeRF in the Dark: High Dynamic Range View Synthesis from Noisy Raw Images
NeRF in the Dark: High Dynamic Range View Synthesis from Noisy Raw Images
Ben MildenhallPeter HedmanRicardo Martin-BruallaPratul SrinivasanJonathan T. Barron
Neural Radiance Fields (NeRF) is a technique for high quality novel view synthesis from a collection of posed input images. Like most view synthesis methods, NeRF uses tonemapped low dynamic range (LDR) as input; these images have been processed by a lossy camera pipeline that smooths detail, clips highlights, and distorts the simple noise distribution of raw sensor data. We modify NeRF to instead train directly on linear raw images, preserving the scene's full dynamic range. By rendering raw output images from the resulting NeRF, we can perform novel high dynamic range (HDR) view synthesis tasks. In addition to changing the camera viewpoint, we can manipulate focus, exposure, and tonemapping after the fact. Although a single raw image appears significantly more noisy than a postprocessed one, we show that NeRF is highly robust to the zero-mean distribution of raw noise. When optimized over many noisy raw inputs (25-200), NeRF produces a scene representation so accurate that its rendered novel views outperform dedicated single and multi-image deep raw denoisers run on the same wide baseline input images. As a result, our method, which we call RawNeRF, can reconstruct scenes from extremely noisy images captured in near-darkness.
aek
pure
367) [2021] Palette: Image-to-Image Diffusion Models
Palette: Image-to-Image Diffusion Models
Chitwan SahariaWilliam ChanHuiwen ChangChris A. LeeJonathan HoTim SalimansDavid J. FleetMohammad Norouzi
We introduce Palette, a simple and general framework for image-to-image translation using conditional diffusion models. On four challenging image-to-image translation tasks (colorization, inpainting, uncropping, and JPEG decompression), Palette outperforms strong GAN and regression baselines, and establishes a new state of the art. This is accomplished without task-specific hyper-parameter tuning, architecture customization, or any auxiliary loss, demonstrating a desirable degree of generality and flexibility. We uncover the impact of using $L_2$ vs. $L_1$ loss in the denoising diffusion objective on sample diversity, and demonstrate the importance of self-attention through empirical architecture studies. Importantly, we advocate a unified evaluation protocol based on ImageNet, and report several sample quality scores including FID, Inception Score, Classification Accuracy of a pre-trained ResNet-50, and Perceptual Distance against reference images for various baselines. We expect this standardized evaluation protocol to play a critical role in advancing image-to-image translation research. Finally, we show that a single generalist Palette model trained on 3 tasks (colorization, inpainting, JPEG decompression) performs as well or better than task-specific specialist counterparts.
aek
366) [2021] HyperStyle: StyleGAN Inversion with HyperNetworks for Real Image Editing
HyperStyle: StyleGAN Inversion with HyperNetworks for Real Image Editing
Yuval AlalufOmer TovRon MokadyRinon GalAmit H. Bermano
The inversion of real images into StyleGAN's latent space is a well-studied problem. Nevertheless, applying existing approaches to real-world scenarios remains an open challenge, due to an inherent trade-off between reconstruction and editability: latent space regions which can accurately represent real images typically suffer from degraded semantic control. Recent work proposes to mitigate this trade-off by fine-tuning the generator to add the target image to well-behaved, editable regions of the latent space. While promising, this fine-tuning scheme is impractical for prevalent use as it requires a lengthy training phase for each new image. In this work, we introduce this approach into the realm of encoder-based inversion. We propose HyperStyle, a hypernetwork that learns to modulate StyleGAN's weights to faithfully express a given image in editable regions of the latent space. A naive modulation approach would require training a hypernetwork with over three billion parameters. Through careful network design, we reduce this to be in line with existing encoders. HyperStyle yields reconstructions comparable to those of optimization techniques with the near real-time inference capabilities of encoders. Lastly, we demonstrate HyperStyle's effectiveness on several applications beyond the inversion task, including the editing of out-of-domain images which were never seen during training.
aek

Tuesday 30 November 2021

365) [2021] DIVeR: Real-time and Accurate Neural Radiance Fields with Deterministic Integration for Volume Rendering
DIVeR: Real-time and Accurate Neural Radiance Fields with Deterministic Integration for Volume Rendering
Liwen WuJae Yong LeeAnand BhattadYuxiong WangDavid Forsyth
DIVeR builds on the key ideas of NeRF and its variants -- density models and volume rendering -- to learn 3D object models that can be rendered realistically from small numbers of images. In contrast to all previous NeRF methods, DIVeR uses deterministic rather than stochastic estimates of the volume rendering integral. DIVeR's representation is a voxel based field of features. To compute the volume rendering integral, a ray is broken into intervals, one per voxel; components of the volume rendering integral are estimated from the features for each interval using an MLP, and the components are aggregated. As a result, DIVeR can render thin translucent structures that are missed by other integrators. Furthermore, DIVeR's representation has semantics that is relatively exposed compared to other such methods -- moving feature vectors around in the voxel space results in natural edits. Extensive qualitative and quantitative comparisons to current state-of-the-art methods show that DIVeR produces models that (1) render at or above state-of-the-art quality, (2) are very small without being baked, (3) render very fast without being baked, and (4) can be edited in natural ways.
pure
364) [2021] Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields
Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields
Jonathan T. BarronBen MildenhallDor VerbinPratul P. SrinivasanPeter Hedman
Though neural radiance fields (NeRF) have demonstrated impressive view synthesis results on objects and small bounded regions of space, they struggle on "unbounded" scenes, where the camera may point in any direction and content may exist at any distance. In this setting, existing NeRF-like models often produce blurry or low-resolution renderings (due to the unbalanced detail and scale of nearby and distant objects), are slow to train, and may exhibit artifacts due to the inherent ambiguity of the task of reconstructing a large scene from a small set of images. We present an extension of mip-NeRF (a NeRF variant that addresses sampling and aliasing) that uses a non-linear scene parameterization, online distillation, and a novel distortion-based regularizer to overcome the challenges presented by unbounded scenes. Our model, which we dub "mip-NeRF 360" as we target scenes in which the camera rotates 360 degrees around a point, reduces mean-squared error by 54% compared to mip-NeRF, and is able to produce realistic synthesized views and detailed depth maps for highly intricate, unbounded real-world scenes.
pure
363) [2021] Direct Voxel Grid Optimization: Super-fast Convergence for Radiance Fields Reconstruction
Direct Voxel Grid Optimization: Super-fast Convergence for Radiance Fields Reconstruction
Cheng SunMin SunHwann-Tzong Chen
We present a super-fast convergence approach to reconstructing the per-scene radiance field from a set of images that capture the scene with known poses. This task, which is often applied to novel view synthesis, is recently revolutionized by Neural Radiance Field (NeRF) for its state-of-the-art quality and flexibility. However, NeRF and its variants require a lengthy training time ranging from hours to days for a single scene. In contrast, our approach achieves NeRF-comparable quality and converges rapidly from scratch in less than 15 minutes with a single GPU. We adopt a representation consisting of a density voxel grid for scene geometry and a feature voxel grid with a shallow network for complex view-dependent appearance. Modeling with explicit and discretized volume representations is not new, but we propose two simple yet non-trivial techniques that contribute to fast convergence speed and high-quality output. First, we introduce the post-activation interpolation on voxel density, which is capable of producing sharp surfaces in lower grid resolution. Second, direct voxel density optimization is prone to suboptimal geometry solutions, so we robustify the optimization process by imposing several priors. Finally, evaluation on five inward-facing benchmarks shows that our method matches, if not surpasses, NeRF's quality, yet it only takes about 15 minutes to train from scratch for a new scene.
pure

Friday 26 November 2021

362) [2021] N\"UWA: Visual Synthesis Pre-training for Neural visUal World creAtion
N\"UWA: Visual Synthesis Pre-training for Neural visUal World creAtion
Chenfei WuJian LiangLei JiFan YangYuejian FangDaxin JiangNan Duan
This paper presents a unified multimodal pre-trained model called N\"UWA that can generate new or manipulate existing visual data (i.e., images and videos) for various visual synthesis tasks. To cover language, image, and video at the same time for different scenarios, a 3D transformer encoder-decoder framework is designed, which can not only deal with videos as 3D data but also adapt to texts and images as 1D and 2D data, respectively. A 3D Nearby Attention (3DNA) mechanism is also proposed to consider the nature of the visual data and reduce the computational complexity. We evaluate N\"UWA on 8 downstream tasks. Compared to several strong baselines, N\"UWA achieves state-of-the-art results on text-to-image generation, text-to-video generation, video prediction, etc. Furthermore, it also shows surprisingly good zero-shot capabilities on text-guided image and video manipulation tasks. Project repo is https://github.com/microsoft/NUWA.
teng

Tuesday 23 November 2021

361) [2020] Movement Tracking by Optical Flow Assisted Inertial Navigation
Movement Tracking by Optical Flow Assisted Inertial Navigation
Lassi MeronenWilliam J. WilkinsonArno Solin
Robust and accurate six degree-of-freedom tracking on portable devices remains a challenging problem, especially on small hand-held devices such as smartphones. For improved robustness and accuracy, complementary movement information from an IMU and a camera is often fused. Conventional visual-inertial methods fuse information from IMUs with a sparse cloud of feature points tracked by the device camera. We consider a visually dense approach, where the IMU data is fused with the dense optical flow field estimated from the camera data. Learning-based methods applied to the full image frames can leverage visual cues and global consistency of the flow field to improve the flow estimates. We show how a learning-based optical flow model can be combined with conventional inertial navigation, and how ideas from probabilistic deep learning can aid the robustness of the measurement updates. The practical applicability is demonstrated on real-world data acquired by an iPad in a challenging low-texture environment.
pure

Monday 22 November 2021

360) [2021] Are Transformers More Robust Than CNNs?
Are Transformers More Robust Than CNNs?
Yutong BaiJieru MeiAlan YuilleCihang Xie
Transformer emerges as a powerful tool for visual recognition. In addition to demonstrating competitive performance on a broad range of visual benchmarks, recent works also argue that Transformers are much more robust than Convolutions Neural Networks (CNNs). Nonetheless, surprisingly, we find these conclusions are drawn from unfair experimental settings, where Transformers and CNNs are compared at different scales and are applied with distinct training frameworks. In this paper, we aim to provide the first fair & in-depth comparisons between Transformers and CNNs, focusing on robustness evaluations. With our unified training setup, we first challenge the previous belief that Transformers outshine CNNs when measuring adversarial robustness. More surprisingly, we find CNNs can easily be as robust as Transformers on defending against adversarial attacks, if they properly adopt Transformers' training recipes. While regarding generalization on out-of-distribution samples, we show pre-training on (external) large-scale datasets is not a fundamental request for enabling Transformers to achieve better performance than CNNs. Moreover, our ablations suggest such stronger generalization is largely benefited by the Transformer's self-attention-like architectures per se, rather than by other training setups. We hope this work can help the community better understand and benchmark the robustness of Transformers and CNNs. The code and models are publicly available at https://github.com/ytongbai/ViTs-vs-CNNs.
aek

Saturday 20 November 2021

359) [2021] STransGAN: An Empirical Study on Transformer in GANs
STransGAN: An Empirical Study on Transformer in GANs
Rui XuXiangyu XuKai ChenBolei ZhouChen Change Loy
Transformer becomes prevalent in computer vision, especially for high-level vision tasks. However, deploying Transformer in the generative adversarial network (GAN) framework is still an open yet challenging problem. In this paper, we conduct a comprehensive empirical study to investigate the intrinsic properties of Transformer in GAN for high-fidelity image synthesis. Our analysis highlights the importance of feature locality in image generation. We first investigate the effective ways to implement local attention. We then examine the influence of residual connections in self-attention layers and propose a novel way to reduce their negative impacts on learning discriminators and conditional generators. Our study leads to a new design of Transformers in GAN, a convolutional neural network (CNN)-free generator termed as STrans-G, which achieves competitive results in both unconditional and conditional image generations. The Transformer-based discriminator, STrans-D, also significantly reduces its gap against the CNN-based discriminators.
teng

Wednesday 17 November 2021

358) [2021] Advances in Neural Rendering
Advances in Neural Rendering
Ayush TewariJustus ThiesBen MildenhallPratul SrinivasanEdgar TretschkYifan WangChristoph LassnerVincent SitzmannRicardo Martin-BruallaStephen LombardiTomas SimonChristian TheobaltMatthias NiessnerJonathan T. BarronGordon WetzsteinMichael ZollhoeferVladislav Golyanik
Synthesizing photo-realistic images and videos is at the heart of computer graphics and has been the focus of decades of research. Traditionally, synthetic images of a scene are generated using rendering algorithms such as rasterization or ray tracing, which take specifically defined representations of geometry and material properties as input. Collectively, these inputs define the actual scene and what is rendered, and are referred to as the scene representation (where a scene consists of one or more objects). Example scene representations are triangle meshes with accompanied textures (e.g., created by an artist), point clouds (e.g., from a depth sensor), volumetric grids (e.g., from a CT scan), or implicit surface functions (e.g., truncated signed distance fields). The reconstruction of such a scene representation from observations using differentiable rendering losses is known as inverse graphics or inverse rendering. Neural rendering is closely related, and combines ideas from classical computer graphics and machine learning to create algorithms for synthesizing images from real-world observations. Neural rendering is a leap forward towards the goal of synthesizing photo-realistic image and video content. In recent years, we have seen immense progress in this field through hundreds of publications that show different ways to inject learnable components into the rendering pipeline. This state-of-the-art report on advances in neural rendering focuses on methods that combine classical rendering principles with learned 3D scene representations, often now referred to as neural scene representations. A key advantage of these methods is that they are 3D-consistent by design, enabling applications such as novel viewpoint synthesis of a captured scene. In addition to methods that handle static scenes, we cover neural scene representations for modeling non-rigidly deforming objects...
teng
357) [2021] Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data
Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data
Liming JiangBo DaiWayne WuChen Change Loy
Generative adversarial networks (GANs) typically require ample data for training in order to synthesize high-fidelity images. Recent studies have shown that training GANs with limited data remains formidable due to discriminator overfitting, the underlying cause that impedes the generator's convergence. This paper introduces a novel strategy called Adaptive Pseudo Augmentation (APA) to encourage healthy competition between the generator and the discriminator. As an alternative method to existing approaches that rely on standard data augmentations or model regularization, APA alleviates overfitting by employing the generator itself to augment the real data distribution with generated images, which deceives the discriminator adaptively. Extensive experiments demonstrate the effectiveness of APA in improving synthesis quality in the low-data regime. We provide a theoretical analysis to examine the convergence and rationality of our new training strategy. APA is simple and effective. It can be added seamlessly to powerful contemporary GANs, such as StyleGAN2, with negligible computational cost.
teng
356) [2021] A Fast View Synthesis Implementation Method for Light Field Applications
A Fast View Synthesis Implementation Method for Light Field Applications
GaoWei ZhouLinjie TaoLvfang
View synthesis (VS) for light field images is a very time-consuming task due to the great quantity of involved pixels and intensive computations, which may prevent it from the practical three-dimen...
pure
355) [2021] Template NeRF: Towards Modeling Dense Shape Correspondences from Category-Specific Object Images
Template NeRF: Towards Modeling Dense Shape Correspondences from Category-Specific Object Images
Jianfei GuoZhiyuan YangXi LinQingfu Zhang
We present neural radiance fields (NeRF) with templates, dubbed Template-NeRF, for modeling appearance and geometry and generating dense shape correspondences simultaneously among objects of the same category from only multi-view posed images, without the need of either 3D supervision or ground-truth correspondence knowledge. The learned dense correspondences can be readily used for various image-based tasks such as keypoint detection, part segmentation, and texture transfer that previously require specific model designs. Our method can also accommodate annotation transfer in a one or few-shot manner, given only one or a few instances of the category. Using periodic activation and feature-wise linear modulation (FiLM) conditioning, we introduce deep implicit templates on 3D data into the 3D-aware image synthesis pipeline NeRF. By representing object instances within the same category as shape and appearance variation of a shared NeRF template, our proposed method can achieve dense shape correspondences reasoning on images for a wide range of object classes. We demonstrate the results and applications on both synthetic and real-world data with competitive results compared with other methods based on 3D information.
pure

Thursday 11 November 2021

354) [2021] Autoregressive Diffusion Models
Autoregressive Diffusion Models
Emiel HoogeboomAlexey A. GritsenkoJasmijn BastingsBen PooleRianne van den BergTim Salimans
We introduce Autoregressive Diffusion Models (ARDMs), a model class encompassing and generalizing order-agnostic autoregressive models (Uria et al., 2014) and absorbing discrete diffusion (Austin et al., 2021), which we show are special cases of ARDMs under mild assumptions. ARDMs are simple to implement and easy to train. Unlike standard ARMs, they do not require causal masking of model representations, and can be trained using an efficient objective similar to modern probabilistic diffusion models that scales favourably to highly-dimensional data. At test time, ARDMs support parallel generation which can be adapted to fit any given generation budget. We find that ARDMs require significantly fewer steps than discrete diffusion models to attain the same performance. Finally, we apply ARDMs to lossless compression, and show that they are uniquely suited to this task. Contrary to existing approaches based on bits-back coding, ARDMs obtain compelling results not only on complete datasets, but also on compressing single data points. Moreover, this can be done using a modest number of network calls for (de)compression due to the model's adaptable parallel generation.
som

Tuesday 09 November 2021

353) [2021] Normalizing Flow as a Flexible Fidelity Objective for Photo-Realistic Super-resolution
Normalizing Flow as a Flexible Fidelity Objective for Photo-Realistic Super-resolution
Andreas LugmayrMartin DanelljanFisher YuLuc Van GoolRadu Timofte
Super-resolution is an ill-posed problem, where a ground-truth high-resolution image represents only one possibility in the space of plausible solutions. Yet, the dominant paradigm is to employ pixel-wise losses, such as L_1, which drive the prediction towards a blurry average. This leads to fundamentally conflicting objectives when combined with adversarial losses, which degrades the final quality. We address this issue by revisiting the L_1 loss and show that it corresponds to a one-layer conditional flow. Inspired by this relation, we explore general flows as a fidelity-based alternative to the L_1 objective. We demonstrate that the flexibility of deeper flows leads to better visual quality and consistency when combined with adversarial losses. We conduct extensive user studies for three datasets and scale factors, where our approach is shown to outperform state-of-the-art methods for photo-realistic super-resolution. Code and trained models will be available at: git.io/AdFlow
352) [2021] EditGAN: High-Precision Semantic Image Editing
EditGAN: High-Precision Semantic Image Editing
Huan LingKarsten KreisDaiqing LiSeung Wook KimAntonio TorralbaSanja Fidler
Generative adversarial networks (GANs) have recently found applications in image editing. However, most GAN based image editing methods often require large scale datasets with semantic segmentation annotations for training, only provide high level control, or merely interpolate between different images. Here, we propose EditGAN, a novel method for high quality, high precision semantic image editing, allowing users to edit images by modifying their highly detailed part segmentation masks, e.g., drawing a new mask for the headlight of a car. EditGAN builds on a GAN framework that jointly models images and their semantic segmentations, requiring only a handful of labeled examples, making it a scalable tool for editing. Specifically, we embed an image into the GAN latent space and perform conditional latent code optimization according to the segmentation edit, which effectively also modifies the image. To amortize optimization, we find editing vectors in latent space that realize the edits. The framework allows us to learn an arbitrary number of editing vectors, which can then be directly applied on other images at interactive rates. We experimentally show that EditGAN can manipulate images with an unprecedented level of detail and freedom, while preserving full image quality.We can also easily combine multiple edits and perform plausible edits beyond EditGAN training data. We demonstrate EditGAN on a wide variety of image types and quantitatively outperform several previous editing methods on standard editing benchmark tasks.
351) [2021] TermiNeRF: Ray Termination Prediction for Efficient Neural Rendering
TermiNeRF: Ray Termination Prediction for Efficient Neural Rendering
Martin PialaRonald Clark
Volume rendering using neural fields has shown great promise in capturing and synthesizing novel views of 3D scenes. However, this type of approach requires querying the volume network at multiple points along each viewing ray in order to render an image, resulting in very slow rendering times. In this paper, we present a method that overcomes this limitation by learning a direct mapping from camera rays to locations along the ray that are most likely to influence the pixel's final appearance. Using this approach we are able to render, train and fine-tune a volumetrically-rendered neural field model an order of magnitude faster than standard approaches. Unlike existing methods, our approach works with general volumes and can be trained end-to-end.
350) [2021] Tip-Adapter: Training-free CLIP-Adapter for Better Vision-Language Modeling
Tip-Adapter: Training-free CLIP-Adapter for Better Vision-Language Modeling
Renrui ZhangRongyao FangPeng GaoWei ZhangKunchang LiJifeng DaiYu QiaoHongsheng Li
Contrastive Vision-Language Pre-training, known as CLIP, has provided a new paradigm for learning visual representations by using large-scale contrastive image-text pairs. It shows impressive performance on zero-shot knowledge transfer to downstream tasks. To further enhance CLIP's few-shot capability, CLIP-Adapter proposed to fine-tune a lightweight residual feature adapter and significantly improves the performance for few-shot classification. However, such a process still needs extra training and computational resources. In this paper, we propose \textbf{T}raining-Free CL\textbf{IP}-\textbf{Adapter} (\textbf{Tip-Adapter}), which not only inherits CLIP's training-free advantage but also performs comparably or even better than CLIP-Adapter. Tip-Adapter does not require any back propagation for training the adapter, but creates the weights by a key-value cache model constructed from the few-shot training set. In this non-parametric manner, Tip-Adapter acquires well-performed adapter weights without any training, which is both efficient and effective. Moreover, the performance of Tip-Adapter can be further boosted by fine-tuning such properly initialized adapter for only a few epochs with super-fast convergence speed. We conduct extensive experiments of few-shot classification on ImageNet and other 10 datasets to demonstrate the superiority of proposed Tip-Adapter. The code will be released at \url{https://github.com/gaopengcuhk/Tip-Adapter}.

Monday 08 November 2021

349) [2021] StyleCLIPDraw: Coupling Content and Style in Text-to-Drawing Synthesis
StyleCLIPDraw: Coupling Content and Style in Text-to-Drawing Synthesis
Peter SchaldenbrandZhixuan LiuJean Oh
Generating images that fit a given text description using machine learning has improved greatly with the release of technologies such as the CLIP image-text encoder model; however, current methods lack artistic control of the style of image to be generated. We introduce StyleCLIPDraw which adds a style loss to the CLIPDraw text-to-drawing synthesis model to allow artistic control of the synthesized drawings in addition to control of the content via text. Whereas performing decoupled style transfer on a generated image only affects the texture, our proposed coupled approach is able to capture a style in both texture and shape, suggesting that the style of the drawing is coupled with the drawing process itself. More results and our code are available at https://github.com/pschaldenbrand/StyleCLIPDraw

Friday 05 November 2021

348) [2021] DiffusionCLIP: Text-guided Image Manipulation Using Diffusion Models
DiffusionCLIP: Text-guided Image Manipulation Using Diffusion Models
Gwanghyun KimJong Chul Ye
Diffusion models are recent generative models that have shown great success in image generation with the state-of-the-art performance. However, only a few researches have been conducted for image manipulation with diffusion models. Here, we present a novel DiffusionCLIP which performs text-driven image manipulation with diffusion models using Contrastive Language-Image Pre-training (CLIP) loss. Our method has a performance comparable to that of the modern GAN-based image processing methods for in and out-of-domain image processing tasks, with the advantage of almost perfect inversion even without additional encoders or optimization. Furthermore, our method can be easily used for various novel applications, enabling image translation from an unseen domain to another unseen domain or stroke-conditioned image generation in an unseen domain, etc. Finally, we present a novel multiple attribute control with DiffusionCLIPby combining multiple fine-tuned diffusion models.
som
ta
347) [2021] Learning Transferable Visual Models From Natural Language Supervision
Learning Transferable Visual Models From Natural Language Supervision
Alec RadfordJong Wook KimChris HallacyAditya RameshGabriel GohSandhini AgarwalGirish SastryAmanda AskellPamela MishkinJack ClarkGretchen KruegerIlya Sutskever
State-of-the-art computer vision systems are trained to predict a fixed set of predetermined object categories. This restricted form of supervision limits their generality and usability since additional labeled data is needed to specify any other visual concept. Learning directly from raw text about images is a promising alternative which leverages a much broader source of supervision. We demonstrate that the simple pre-training task of predicting which caption goes with which image is an efficient and scalable way to learn SOTA image representations from scratch on a dataset of 400 million (image, text) pairs collected from the internet. After pre-training, natural language is used to reference learned visual concepts (or describe new ones) enabling zero-shot transfer of the model to downstream tasks. We study the performance of this approach by benchmarking on over 30 different existing computer vision datasets, spanning tasks such as OCR, action recognition in videos, geo-localization, and many types of fine-grained object classification. The model transfers non-trivially to most tasks and is often competitive with a fully supervised baseline without the need for any dataset specific training. For instance, we match the accuracy of the original ResNet-50 on ImageNet zero-shot without needing to use any of the 1.28 million training examples it was trained on. We release our code and pre-trained model weights at https://github.com/OpenAI/CLIP.
som

Thursday 04 November 2021

346) [2021] CLIP-Forge: Towards Zero-Shot Text-to-Shape Generation
CLIP-Forge: Towards Zero-Shot Text-to-Shape Generation
Aditya SanghiHang ChuJoseph G. LambourneYe WangChin-Yi ChengMarco Fumero
While recent progress has been made in text-to-image generation, text-to-shape generation remains a challenging problem due to the unavailability of paired text and shape data at a large scale. We present a simple yet effective method for zero-shot text-to-shape generation based on a two-stage training process, which only depends on an unlabelled shape dataset and a pre-trained image-text network such as CLIP. Our method not only demonstrates promising zero-shot generalization, but also avoids expensive inference time optimization and can generate multiple shapes for a given text.
som
teng
345) GANlapse Generative Photography
GANlapse Generative Photography
Simon ColtonBlanca Perez Ferrer
We describe the incorporation of text-to-image generative deep learning techniques into an art practice for making video pieces akin to time-lapse photography. We show that the process can be suitably controlled to find a latent vector able to generate an appropriate image, construct nearby vectors for similar images and interpolate between them to produce video pieces. We describe the process, how this fits into the GAN-art movement, and the cultural impact of this work in terms of an online and physical art exhibition in the Etopia arts and technology centre in Spain.
som
344) [2021] StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery
StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery
Or PatashnikZongze WuEli ShechtmanDaniel Cohen-OrDani Lischinski
Inspired by the ability of StyleGAN to generate highly realistic images in a variety of domains, much recent work has focused on understanding how to use the latent spaces of StyleGAN to manipulate generated and real images. However, discovering semantically meaningful latent manipulations typically involves painstaking human examination of the many degrees of freedom, or an annotated collection of images for each desired manipulation. In this work, we explore leveraging the power of recently introduced Contrastive Language-Image Pre-training (CLIP) models in order to develop a text-based interface for StyleGAN image manipulation that does not require such manual effort. We first introduce an optimization scheme that utilizes a CLIP-based loss to modify an input latent vector in response to a user-provided text prompt. Next, we describe a latent mapper that infers a text-guided latent manipulation step for a given input image, allowing faster and more stable text-based manipulation. Finally, we present a method for mapping a text prompts to input-agnostic directions in StyleGAN's style space, enabling interactive text-driven image manipulation. Extensive results and comparisons demonstrate the effectiveness of our approaches.
som
ta

Wednesday 03 November 2021

343) [2021] NVAE: A Deep Hierarchical Variational Autoencoder
NVAE: A Deep Hierarchical Variational Autoencoder
Arash VahdatJan Kautz
Normalizing flows, autoregressive models, variational autoencoders (VAEs), and deep energy-based models are among competing likelihood-based frameworks for deep generative learning. Among them, VAEs have the advantage of fast and tractable sampling and easy-to-access encoding networks. However, they are currently outperformed by other models such as normalizing flows and autoregressive models. While the majority of the research in VAEs is focused on the statistical challenges, we explore the orthogonal direction of carefully designing neural architectures for hierarchical VAEs. We propose Nouveau VAE (NVAE), a deep hierarchical VAE built for image generation using depth-wise separable convolutions and batch normalization. NVAE is equipped with a residual parameterization of Normal distributions and its training is stabilized by spectral regularization. We show that NVAE achieves state-of-the-art results among non-autoregressive likelihood-based models on the MNIST, CIFAR-10, CelebA 64, and CelebA HQ datasets and it provides a strong baseline on FFHQ. For example, on CIFAR-10, NVAE pushes the state-of-the-art from 2.98 to 2.91 bits per dimension, and it produces high-quality images on CelebA HQ. To the best of our knowledge, NVAE is the first successful VAE applied to natural images as large as 256$\times$256 pixels. The source code is available at https://github.com/NVlabs/NVAE .
342) [2021] Self-Supervised Object Detection via Generative Image Synthesis
Self-Supervised Object Detection via Generative Image Synthesis
Siva Karthik MustikovelaShalini De MelloAayush PrakashUmar IqbalSifei LiuThu Nguyen-PhuocCarsten RotherJan Kautz
We present SSOD, the first end-to-end analysis-by synthesis framework with controllable GANs for the task of self-supervised object detection. We use collections of real world images without bounding box annotations to learn to synthesize and detect objects. We leverage controllable GANs to synthesize images with pre-defined object properties and use them to train object detectors. We propose a tight end-to-end coupling of the synthesis and detection networks to optimally train our system. Finally, we also propose a method to optimally adapt SSOD to an intended target data without requiring labels for it. For the task of car detection, on the challenging KITTI and Cityscapes datasets, we show that SSOD outperforms the prior state-of-the-art purely image-based self-supervised object detection method Wetectron. Even without requiring any 3D CAD assets, it also surpasses the state-of-the-art rendering based method Meta-Sim2. Our work advances the field of self-supervised object detection by introducing a successful new paradigm of using controllable GAN-based image synthesis for it and by significantly improving the baseline accuracy of the task. We open-source our code at https://github.com/NVlabs/SSOD.

Sunday 24 October 2021

341) [2021] CLOOB: Modern Hopfield Networks with InfoLOOB Outperform CLIP
CLOOB: Modern Hopfield Networks with InfoLOOB Outperform CLIP
Andreas FürstElisabeth RumetshoferViet TranHubert RamsauerFei TangJohannes LehnerDavid KreilMichael KoppGünter KlambauerAngela Bitto-NemlingSepp Hochreiter
Contrastive learning with the InfoNCE objective is exceptionally successful in various self-supervised learning tasks. Recently, the CLIP model yielded impressive results on zero-shot transfer learning when using InfoNCE for learning visual representations from natural language supervision. However, InfoNCE as a lower bound on the mutual information has been shown to perform poorly for high mutual information. In contrast, the InfoLOOB upper bound (leave one out bound) works well for high mutual information but suffers from large variance and instabilities. We introduce "Contrastive Leave One Out Boost" (CLOOB), where modern Hopfield networks boost learning with the InfoLOOB objective. Modern Hopfield networks replace the original embeddings by retrieved embeddings in the InfoLOOB objective. The retrieved embeddings give InfoLOOB two assets. Firstly, the retrieved embeddings stabilize InfoLOOB, since they are less noisy and more similar to one another than the original embeddings. Secondly, they are enriched by correlations, since the covariance structure of embeddings is reinforced through retrievals. We compare CLOOB to CLIP after learning on the Conceptual Captions and the YFCC dataset with respect to their zero-shot transfer learning performance on other datasets. CLOOB consistently outperforms CLIP at zero-shot transfer learning across all considered architectures and datasets.
teng
340) [2021] How to Train Your Energy-Based Models
How to Train Your Energy-Based Models
Yang SongDiederik P. Kingma
Energy-Based Models (EBMs), also known as non-normalized probabilistic models, specify probability density or mass functions up to an unknown normalizing constant. Unlike most other probabilistic models, EBMs do not place a restriction on the tractability of the normalizing constant, thus are more flexible to parameterize and can model a more expressive family of probability distributions. However, the unknown normalizing constant of EBMs makes training particularly difficult. Our goal is to provide a friendly introduction to modern approaches for EBM training. We start by explaining maximum likelihood training with Markov chain Monte Carlo (MCMC), and proceed to elaborate on MCMC-free approaches, including Score Matching (SM) and Noise Constrastive Estimation (NCE). We highlight theoretical connections among these three approaches, and end with a brief survey on alternative training methods, which are still under active research. Our tutorial is targeted at an audience with basic understanding of generative models who want to apply EBMs or start a research project in this direction.
aek
339) [2021] Self-Supervised Object Detection via Generative Image Synthesis
Self-Supervised Object Detection via Generative Image Synthesis
Siva Karthik MustikovelaShalini De MelloAayush PrakashUmar IqbalSifei LiuThu Nguyen-PhuocCarsten RotherJan Kautz
We present SSOD, the first end-to-end analysis-by synthesis framework with controllable GANs for the task of self-supervised object detection. We use collections of real world images without bounding box annotations to learn to synthesize and detect objects. We leverage controllable GANs to synthesize images with pre-defined object properties and use them to train object detectors. We propose a tight end-to-end coupling of the synthesis and detection networks to optimally train our system. Finally, we also propose a method to optimally adapt SSOD to an intended target data without requiring labels for it. For the task of car detection, on the challenging KITTI and Cityscapes datasets, we show that SSOD outperforms the prior state-of-the-art purely image-based self-supervised object detection method Wetectron. Even without requiring any 3D CAD assets, it also surpasses the state-of-the-art rendering based method Meta-Sim2. Our work advances the field of self-supervised object detection by introducing a successful new paradigm of using controllable GAN-based image synthesis for it and by significantly improving the baseline accuracy of the task. We open-source our code at https://github.com/NVlabs/SSOD.
teng
338) [2021] CIPS-3D: A 3D-Aware Generator of GANs Based on Conditionally-Independent Pixel Synthesis
CIPS-3D: A 3D-Aware Generator of GANs Based on Conditionally-Independent Pixel Synthesis
Peng ZhouLingxi XieBingbing NiQi Tian
The style-based GAN (StyleGAN) architecture achieved state-of-the-art results for generating high-quality images, but it lacks explicit and precise control over camera poses. The recently proposed NeRF-based GANs made great progress towards 3D-aware generators, but they are unable to generate high-quality images yet. This paper presents CIPS-3D, a style-based, 3D-aware generator that is composed of a shallow NeRF network and a deep implicit neural representation (INR) network. The generator synthesizes each pixel value independently without any spatial convolution or upsampling operation. In addition, we diagnose the problem of mirror symmetry that implies a suboptimal solution and solve it by introducing an auxiliary discriminator. Trained on raw, single-view images, CIPS-3D sets new records for 3D-aware image synthesis with an impressive FID of 6.97 for images at the $256\times256$ resolution on FFHQ. We also demonstrate several interesting directions for CIPS-3D such as transfer learning and 3D-aware face stylization. The synthesis results are best viewed as videos, so we recommend the readers to check our github project at https://github.com/PeterouZh/CIPS-3D
teng
337) [2021] StyleNeRF: A Style-based 3D-Aware Generator for High-resolution Image Synthesis
StyleNeRF: A Style-based 3D-Aware Generator for High-resolution Image Synthesis
Jiatao GuLingjie LiuPeng WangChristian Theobalt
We propose StyleNeRF, a 3D-aware generative model for photo-realistic high-resolution image synthesis with high multi-view consistency, which can be trained on unstructured 2D images. Existing approaches either cannot synthesize high-resolution images with fine details or yield noticeable 3D-inconsistent artifacts. In addition, many of them lack control over style attributes and explicit 3D camera poses. StyleNeRF integrates the neural radiance field (NeRF) into a style-based generator to tackle the aforementioned challenges, i.e., improving rendering efficiency and 3D consistency for high-resolution image generation. We perform volume rendering only to produce a low-resolution feature map and progressively apply upsampling in 2D to address the first issue. To mitigate the inconsistencies caused by 2D upsampling, we propose multiple designs, including a better upsampler and a new regularization loss. With these designs, StyleNeRF can synthesize high-resolution images at interactive rates while preserving 3D consistency at high quality. StyleNeRF also enables control of camera poses and different levels of styles, which can generalize to unseen views. It also supports challenging tasks, including zoom-in and-out, style mixing, inversion, and semantic editing.
star
teng

Wednesday 20 October 2021

336) [2021] Structured Denoising Diffusion Models in Discrete State-Spaces
Structured Denoising Diffusion Models in Discrete State-Spaces
Jacob AustinDaniel D. JohnsonJonathan HoDaniel TarlowRianne van den Berg
Denoising diffusion probabilistic models (DDPMs) (Ho et al. 2020) have shown impressive results on image and waveform generation in continuous state spaces. Here, we introduce Discrete Denoising Diffusion Probabilistic Models (D3PMs), diffusion-like generative models for discrete data that generalize the multinomial diffusion model of Hoogeboom et al. 2021, by going beyond corruption processes with uniform transition probabilities. This includes corruption with transition matrices that mimic Gaussian kernels in continuous space, matrices based on nearest neighbors in embedding space, and matrices that introduce absorbing states. The third allows us to draw a connection between diffusion models and autoregressive and mask-based generative models. We show that the choice of transition matrix is an important design decision that leads to improved results in image and text domains. We also introduce a new loss function that combines the variational lower bound with an auxiliary cross entropy loss. For text, this model class achieves strong results on character-level text generation while scaling to large vocabularies on LM1B. On the image dataset CIFAR-10, our models approach the sample quality and exceed the log-likelihood of the continuous-space DDPM model.
ta
335) [2021] PriorGrad: Improving Conditional Denoising Diffusion Models with Data-Driven Adaptive Prior
PriorGrad: Improving Conditional Denoising Diffusion Models with Data-Driven Adaptive Prior
Sang-gil LeeHeeseung KimChaehun ShinXu TanChang LiuQi MengTao QinWei ChenSungroh YoonTie-Yan Liu
Denoising diffusion probabilistic models have been recently proposed to generate high-quality samples by estimating the gradient of the data density. The framework assumes the prior noise as a standard Gaussian distribution, whereas the corresponding data distribution may be more complicated than the standard Gaussian distribution, which potentially introduces inefficiency in denoising the prior noise into the data sample because of the discrepancy between the data and the prior. In this paper, we propose PriorGrad to improve the efficiency of the conditional diffusion model (for example, a vocoder using a mel-spectrogram as the condition) by applying an adaptive prior derived from the data statistics based on the conditional information. We formulate the training and sampling procedures of PriorGrad and demonstrate the advantages of an adaptive prior through a theoretical analysis. Focusing on the audio domain, we consider the recently proposed diffusion-based audio generative models based on both the spectral and time domains and show that PriorGrad achieves a faster convergence leading to data and parameter efficiency and improved quality, and thereby demonstrating the efficiency of a data-driven adaptive prior.
ta
334) [2021] ViewNet: Unsupervised Viewpoint Estimation From Conditional Generation
ViewNet: Unsupervised Viewpoint Estimation From Conditional Generation
Octave MariottiOisin Mac AodhaHakan Bilen
moke
333) [2021] Diffusion Probabilistic Models for 3D Point Cloud Generation
Diffusion Probabilistic Models for 3D Point Cloud Generation
Shitong LuoWei Hu
ta
332) [2021] Diffusion Priors In Variational Autoencoders
Diffusion Priors In Variational Autoencoders
Antoine WehenkelGilles Louppe
The paper introduce diffusion models as prior distributions of variational autoencoders.
ta

Tuesday 19 October 2021

331) [2021] Paint by Word
Paint by Word
David BauAlex AndonianAudrey CuiYeonHwan ParkAli JahanianAude OlivaAntonio Torralba
We investigate the problem of zero-shot semantic image painting. Instead of painting modifications into an image using only concrete colors or a finite set of semantic concepts, we ask how to create semantic paint based on open full-text descriptions: our goal is to be able to point to a location in a synthesized image and apply an arbitrary new concept such as "rustic" or "opulent" or "happy dog." To do this, our method combines a state-of-the art generative model of realistic images with a state-of-the-art text-image semantic similarity network. We find that, to make large changes, it is important to use non-gradient methods to explore latent space, and it is important to relax the computations of the GAN to target changes to a specific region. We conduct user studies to compare our methods to several baselines.
som
330) [2021] ADOP: Approximate Differentiable One-Pixel Point Rendering
ADOP: Approximate Differentiable One-Pixel Point Rendering
Darius RückertLinus FrankeMarc Stamminger
We present a novel point-based, differentiable neural rendering pipeline for scene refinement and novel view synthesis. The input are an initial estimate of the point cloud and the camera parameters. The output are synthesized images from arbitrary camera poses. The point cloud rendering is performed by a differentiable renderer using multi-resolution one-pixel point rasterization. Spatial gradients of the discrete rasterization are approximated by the novel concept of ghost geometry. After rendering, the neural image pyramid is passed through a deep neural network for shading calculations and hole-filling. A differentiable, physically-based tonemapper then converts the intermediate output to the target image. Since all stages of the pipeline are differentiable, we optimize all of the scene's parameters i.e. camera model, camera pose, point position, point color, environment map, rendering network weights, vignetting, camera response function, per image exposure, and per image white balance. We show that our system is able to synthesize sharper and more consistent novel views than existing approaches because the initial reconstruction is refined during training. The efficient one-pixel point rasterization allows us to use arbitrary camera models and display scenes with well over 100M points in real time.
pure

Sunday 17 October 2021

329) [2021] High-Fidelity Pluralistic Image Completion with Transformers
High-Fidelity Pluralistic Image Completion with Transformers
Ziyu WanJingbo ZhangDongdong ChenJing Liao
Image completion has made tremendous progress with convolutional neural networks (CNNs), because of their powerful texture modeling capacity. However, due to some inherent properties (e.g., local inductive prior, spatial-invariant kernels), CNNs do not perform well in understanding global structures or naturally support pluralistic completion. Recently, transformers demonstrate their power in modeling the long-term relationship and generating diverse results, but their computation complexity is quadratic to input length, thus hampering the application in processing high-resolution images. This paper brings the best of both worlds to pluralistic image completion: appearance prior reconstruction with transformer and texture replenishment with CNN. The former transformer recovers pluralistic coherent structures together with some coarse textures, while the latter CNN enhances the local texture details of coarse priors guided by the high-resolution masked images. The proposed method vastly outperforms state-of-the-art methods in terms of three aspects: 1) large performance boost on image fidelity even compared to deterministic completion methods; 2) better diversity and higher fidelity for pluralistic completion; 3) exceptional generalization ability on large masks and generic dataset, like ImageNet.
teng

Saturday 16 October 2021

328) [2021] Liquid Neural Networks
Liquid Neural Networks
Ramin Hasani, MIT - intro by Daniela Rus, MIT Abstract: In this talk, we will discuss the nuts and bolts of the novel continuous-time neural network models: Liquid Time-Constant (LTC) Networks. Instead of declaring a learning system's dynamics by implicit nonlinearities, LTCs construct networks of linear first-order dynamical systems modulated via nonlinear interlinked gates. LTCs represent dynamical systems with varying (i.e., liquid) time-constants, with outputs being computed by numerical differential equation solvers. These neural networks exhibit stable and bounded behavior, yield superior expressivity within the family of neural ordinary differential equations, and give rise to improved performance on time-series prediction tasks compared to advance recurrent network models. Speaker Biographies: Dr. Daniela Rus is the Andrew (1956) and Erna Viterbi Professor of Electrical Engineering and Computer Science and Director of the Computer Science and Artificial Intelligence Laboratory (CSAIL) at MIT. Rus’s research interests are in robotics, mobile computing, and data science. Rus is a Class of 2002 MacArthur Fellow, a fellow of ACM, AAAI and IEEE, and a member of the National Academy of Engineers, and the American Academy of Arts and Sciences. She earned her PhD in Computer Science from Cornell University. Prior to joining MIT, Rus was a professor in the Computer Science Department at Dartmouth College. Dr. Ramin Hasani is a postdoctoral associate and a machine learning scientist at MIT CSAIL. His primary research focus is on the development of interpretable deep learning and decision-making algorithms for robots. Ramin received his Ph.D. with honors in Computer Science at TU Wien, Austria. His dissertation on liquid neural networks was co-advised by Prof. Radu Grosu (TU Wien) and Prof. Daniela Rus (MIT). Ramin is a frequent TEDx speaker. He has completed an M.Sc. in Electronic Engineering at Politecnico di Milano (2015), Italy, and has got his B.Sc. in Electrical Engineering – Electronics at Ferdowsi University of Mashhad, Iran (2012).
ta

Friday 15 October 2021

327) [2020] Analyzing and Improving the Image Quality of StyleGAN
Analyzing and Improving the Image Quality of StyleGAN
Tero KarrasSamuli LaineMiika AittalaJanne HellstenJaakko LehtinenTimo Aila
The style-based GAN architecture (StyleGAN) yields state-of-the-art results in data-driven unconditional generative image modeling. We expose and analyze several of its characteristic artifacts, and propose changes in both model architecture and training methods to address them. In particular, we redesign the generator normalization, revisit progressive growing, and regularize the generator to encourage good conditioning in the mapping from latent codes to images. In addition to improving image quality, this path length regularizer yields the additional benefit that the generator becomes significantly easier to invert. This makes it possible to reliably attribute a generated image to a particular network. We furthermore visualize how well the generator utilizes its output resolution, and identify a capacity problem, motivating us to train larger models for additional quality improvements. Overall, our improved model redefines the state of the art in unconditional image modeling, both in terms of existing distribution quality metrics as well as perceived image quality.
moke
ness
ploy
som
ta
326) [2019] A Style-Based Generator Architecture for Generative Adversarial Networks
A Style-Based Generator Architecture for Generative Adversarial Networks
Tero KarrasSamuli LaineTimo Aila
We propose an alternative generator architecture for generative adversarial networks, borrowing from style transfer literature. The new architecture leads to an automatically learned, unsupervised separation of high-level attributes (e.g., pose and identity when trained on human faces) and stochastic variation in the generated images (e.g., freckles, hair), and it enables intuitive, scale-specific control of the synthesis. The new generator improves the state-of-the-art in terms of traditional distribution quality metrics, leads to demonstrably better interpolation properties, and also better disentangles the latent factors of variation. To quantify interpolation quality and disentanglement, we propose two new, automated methods that are applicable to any generator architecture. Finally, we introduce a new, highly varied and high-quality dataset of human faces.
ness
ploy
ta
325) [2020] Denoising Diffusion Implicit Models
Denoising Diffusion Implicit Models
Jiaming SongChenlin MengStefano Ermon
Denoising diffusion probabilistic models (DDPMs) have achieved high quality image generation without adversarial training, yet they require simulating a Markov chain for many steps in order to...
aek
ness
ta
324) [2020] Denoising Diffusion Probabilistic Models
Denoising Diffusion Probabilistic Models
Jonathan HoAjay JainPieter Abbeel
We present high quality image synthesis results using diffusion probabilistic models, a class of latent variable models inspired by considerations from nonequilibrium thermodynamics. Our best results are obtained by training on a weighted variational bound designed according to a novel connection between diffusion probabilistic models and denoising score matching with Langevin dynamics, and our models naturally admit a progressive lossy decompression scheme that can be interpreted as a generalization of autoregressive decoding. On the unconditional CIFAR10 dataset, we obtain an Inception score of 9.46 and a state-of-the-art FID score of 3.17. On 256x256 LSUN, we obtain sample quality similar to ProgressiveGAN. Our implementation is available at https://github.com/hojonathanho/diffusion
star
moke
aek
ness
nick
ta
323) [2020] StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation
StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation
Zongze WuDani LischinskiEli Shechtman
We explore and analyze the latent style space of StyleGAN2, a state-of-the-art architecture for image generation, using models pretrained on several different datasets. We first show that StyleSpace, the space of channel-wise style parameters, is significantly more disentangled than the other intermediate latent spaces explored by previous works. Next, we describe a method for discovering a large collection of style channels, each of which is shown to control a distinct visual attribute in a highly localized and disentangled manner. Third, we propose a simple method for identifying style channels that control a specific attribute, using a pretrained classifier or a small number of example images. Manipulation of visual attributes via these StyleSpace controls is shown to be better disentangled than via those proposed in previous works. To show this, we make use of a newly proposed Attribute Dependency metric. Finally, we demonstrate the applicability of StyleSpace controls to the manipulation of real images. Our findings pave the way to semantically meaningful and well-disentangled image manipulations via simple and intuitive interfaces.
moke
ness
ta
322) [2017] Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization
Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization
Xun HuangSerge Belongie
Gatys et al. recently introduced a neural algorithm that renders a content image in the style of another image, achieving so-called style transfer. However, their framework requires a slow iterative optimization process, which limits its practical application. Fast approximations with feed-forward neural networks have been proposed to speed up neural style transfer. Unfortunately, the speed improvement comes at a cost: the network is usually tied to a fixed set of styles and cannot adapt to arbitrary new styles. In this paper, we present a simple yet effective approach that for the first time enables arbitrary style transfer in real-time. At the heart of our method is a novel adaptive instance normalization (AdaIN) layer that aligns the mean and variance of the content features with those of the style features. Our method achieves speed comparable to the fastest existing approach, without the restriction to a pre-defined set of styles. In addition, our approach allows flexible user controls such as content-style trade-off, style interpolation, color & spatial controls, all using a single feed-forward neural network.
ness
321) [2021] Less is More: Learning from Synthetic Data with Fine-grained Attributes for Person Re-Identification
Less is More: Learning from Synthetic Data with Fine-grained Attributes for Person Re-Identification
Suncheng XiangGuanjie YouMengyuan GuanHao ChenFeng WangTing LiuYuzhuo Fu
Person re-identification (re-ID) plays an important role in applications such as public security and video surveillance. Recently, learning from synthetic data, which benefits from the popularity of synthetic data engine, has attracted attention from both academia and the public eye. However, existing synthetic datasets are limited in quantity, diversity and realisticity, and cannot be efficiently used for generalizable re-ID problem. To address this challenge, we construct and label a large-scale synthetic person dataset named FineGPR with fine-grained attribute distribution. Moreover, aiming to fully exploit the potential of FineGPR and promote the efficient training from millions of synthetic data, we propose an attribute analysis pipeline AOST to learn attribute distribution in target domain, then apply style transfer network to eliminate the gap between synthetic and real-world data and thus is freely deployed to new scenarios. Experiments conducted on benchmarks demonstrate that FineGPR with AOST outperforms (or is on par with) existing real and synthetic datasets, which suggests its feasibility for re-ID and proves the proverbial less-is-more principle. We hope this fine-grained dataset could advance research towards re-ID in real scenarios.
ness
320) [2021] Exploring the Quality of GAN Generated Images for Person Re-Identification
Exploring the Quality of GAN Generated Images for Person Re-Identification
Yiqi JiangWeihua ChenXiuyu SunXiaoyu ShiFan WangHao Li
Recently, GAN based method has demonstrated strong effectiveness in generating augmentation data for person re-identification (ReID), on account of its ability to bridge the gap between domains and enrich the data variety in feature space. However, most of the ReID works pick all the GAN generated data as additional training samples or evaluate the quality of GAN generation at the entire data set level, ignoring the image-level essential feature of data in ReID task. In this paper, we analyze the in-depth characteristics of ReID sample and solve the problem of "What makes a GAN-generated image good for ReID". Specifically, we propose to examine each data sample with id-consistency and diversity constraints by mapping image onto different spaces. With a metric-based sampling method, we demonstrate that not every GAN-generated data is beneficial for augmentation. Models trained with data filtered by our quality evaluation outperform those trained with the full augmentation set by a large margin. Extensive experiments show the effectiveness of our method on both supervised ReID task and unsupervised domain adaptation ReID task.
ness
319) [2019] Ranked List Loss for Deep Metric Learning
Ranked List Loss for Deep Metric Learning
Xinshao WangYang HuaElyor KodirovNeil M. Robertson
The objective of deep metric learning (DML) is to learn embeddings that can capture semantic similarity and dissimilarity information among data points. Existing pairwise or tripletwise loss functions used in DML are known to suffer from slow convergence due to a large proportion of trivial pairs or triplets as the model improves. To improve this, ranking-motivated structured losses are proposed recently to incorporate multiple examples and exploit the structured information among them. They converge faster and achieve state-of-the-art performance. In this work, we unveil two limitations of existing ranking-motivated structured losses and propose a novel ranked list loss to solve both of them. First, given a query, only a fraction of data points is incorporated to build the similarity structure. Consequently, some useful examples are ignored and the structure is less informative. To address this, we propose to build a set-based similarity structure by exploiting all instances in the gallery. The learning setting can be interpreted as few-shot retrieval: given a mini-batch, every example is iteratively used as a query, and the rest ones compose the gallery to search, i.e., the support set in few-shot setting. The rest examples are split into a positive set and a negative set. For every mini-batch, the learning objective of ranked list loss is to make the query closer to the positive set than to the negative set by a margin. Second, previous methods aim to pull positive pairs as close as possible in the embedding space. As a result, the intraclass data distribution tends to be extremely compressed. In contrast, we propose to learn a hypersphere for each class in order to preserve useful similarity structure inside it, which functions as regularisation. Extensive experiments demonstrate the superiority of our proposal by comparing with the state-of-the-art methods.
ness
318) [2021] Farewell to Mutual Information: Variational Distillation for Cross-Modal Person Re-Identification
Farewell to Mutual Information: Variational Distillation for Cross-Modal Person Re-Identification
Xudong TianZhizhong ZhangShaohui LinYanyun QuYuan XieLizhuang Ma
The Information Bottleneck (IB) provides an information theoretic principle for representation learning, by retaining all information relevant for predicting label while minimizing the redundancy. Though IB principle has been applied to a wide range of applications, its optimization remains a challenging problem which heavily relies on the accurate estimation of mutual information. In this paper, we present a new strategy, Variational Self-Distillation (VSD), which provides a scalable, flexible and analytic solution to essentially fitting the mutual information but without explicitly estimating it. Under rigorously theoretical guarantee, VSD enables the IB to grasp the intrinsic correlation between representation and label for supervised training. Furthermore, by extending VSD to multi-view learning, we introduce two other strategies, Variational Cross-Distillation (VCD) and Variational Mutual-Learning (VML), which significantly improve the robustness of representation to view-changes by eliminating view-specific and task-irrelevant information. To verify our theoretically grounded strategies, we apply our approaches to cross-modal person Re-ID, and conduct extensive experiments, where the superior performance against state-of-the-art methods are demonstrated. Our intriguing findings highlight the need to rethink the way to estimate mutual
ness
317) [2017] Pose Invariant Embedding for Deep Person Re-identification
Pose Invariant Embedding for Deep Person Re-identification
Liang ZhengYujia HuangHuchuan LuYi Yang
Pedestrian misalignment, which mainly arises from detector errors and pose variations, is a critical problem for a robust person re-identification (re-ID) system. With bad alignment, the background noise will significantly compromise the feature learning and matching process. To address this problem, this paper introduces the pose invariant embedding (PIE) as a pedestrian descriptor. First, in order to align pedestrians to a standard pose, the PoseBox structure is introduced, which is generated through pose estimation followed by affine transformations. Second, to reduce the impact of pose estimation errors and information loss during PoseBox construction, we design a PoseBox fusion (PBF) CNN architecture that takes the original image, the PoseBox, and the pose estimation confidence as input. The proposed PIE descriptor is thus defined as the fully connected layer of the PBF network for the retrieval task. Experiments are conducted on the Market-1501, CUHK03, and VIPeR datasets. We show that PoseBox alone yields decent re-ID accuracy and that when integrated in the PBF network, the learned PIE descriptor produces competitive performance compared with the state-of-the-art approaches.
ness
316) [2017] Disentangled Person Image Generation
Disentangled Person Image Generation
Liqian MaQianru SunStamatios GeorgoulisLuc Van GoolBernt SchieleMario Fritz
Generating novel, yet realistic, images of persons is a challenging task due to the complex interplay between the different image factors, such as the foreground, background and pose information. In this work, we aim at generating such images based on a novel, two-stage reconstruction pipeline that learns a disentangled representation of the aforementioned image factors and generates novel person images at the same time. First, a multi-branched reconstruction network is proposed to disentangle and encode the three factors into embedding features, which are then combined to re-compose the input image itself. Second, three corresponding mapping functions are learned in an adversarial manner in order to map Gaussian noise to the learned embedding feature space, for each factor respectively. Using the proposed framework, we can manipulate the foreground, background and pose of the input image, and also sample new embedding features to generate such targeted manipulations, that provide more control over the generation process. Experiments on Market-1501 and Deepfashion datasets show that our model does not only generate realistic person images with new foregrounds, backgrounds and poses, but also manipulates the generated factors and interpolates the in-between states. Another set of experiments on Market-1501 shows that our model can also be beneficial for the person re-identification task.
ness
315) [2019] Learning Disentangled Representation for Robust Person Re-identification
Learning Disentangled Representation for Robust Person Re-identification
Chanho EomBumsub Ham
We address the problem of person re-identification (reID), that is, retrieving person images from a large dataset, given a query image of the person of interest. A key challenge is to learn person representations robust to intra-class variations, as different persons can have the same attribute and the same person's appearance looks different with viewpoint changes. Recent reID methods focus on learning discriminative features but robust to only a particular factor of variations (e.g., human pose), which requires corresponding supervisory signals (e.g., pose annotations). To tackle this problem, we propose to disentangle identity-related and -unrelated features from person images. Identity-related features contain information useful for specifying a particular person (e.g., clothing), while identity-unrelated ones hold other factors (e.g., human pose, scale changes). To this end, we introduce a new generative adversarial network, dubbed \emph{identity shuffle GAN} (IS-GAN), that factorizes these features using identification labels without any auxiliary information. We also propose an identity-shuffling technique to regularize the disentangled features. Experimental results demonstrate the effectiveness of IS-GAN, significantly outperforming the state of the art on standard reID benchmarks including the Market-1501, CUHK03 and DukeMTMC-reID. Our code and models are available online: https://cvlab-yonsei.github.io/projects/ISGAN/.
ness
314) [2021] Progressive and Aligned Pose Attention Transfer for Person Image Generation
Progressive and Aligned Pose Attention Transfer for Person Image Generation
Zhen ZhuTengteng HuangMengde XuBaoguang ShiWenqing ChengXiang Bai
This paper proposes a new generative adversarial network for pose transfer, i.e., transferring the pose of a given person to a target pose. We design a progressive generator which comprises a sequence of transfer blocks. Each block performs an intermediate transfer step by modeling the relationship between the condition and the target poses with attention mechanism. Two types of blocks are introduced, namely Pose-Attentional Transfer Block (PATB) and Aligned Pose-Attentional Transfer Bloc ~(APATB). Compared with previous works, our model generates more photorealistic person images that retain better appearance consistency and shape consistency compared with input images. We verify the efficacy of the model on the Market-1501 and DeepFashion datasets, using quantitative and qualitative measures. Furthermore, we show that our method can be used for data augmentation for the person re-identification task, alleviating the issue of data insufficiency. Code and pretrained models are available at https://github.com/tengteng95/Pose-Transfer.git.
ness

Thursday 14 October 2021

313) [2021] ADOP: Approximate Differentiable One-Pixel Point Rendering
ADOP: Approximate Differentiable One-Pixel Point Rendering
Darius RückertLinus FrankeMarc Stamminger
We present a novel point-based, differentiable neural rendering pipeline for scene refinement and novel view synthesis. The input are an initial estimate of the point cloud and the camera parameters. The output are synthesized images from arbitrary camera poses. The point cloud rendering is performed by a differentiable renderer using multi-resolution one-pixel point rasterization. Spatial gradients of the discrete rasterization are approximated by the novel concept of ghost geometry. After rendering, the neural image pyramid is passed through a deep neural network for shading calculations and hole-filling. A differentiable, physically-based tonemapper then converts the intermediate output to the target image. Since all stages of the pipeline are differentiable, we optimize all of the scene's parameters i.e. camera model, camera pose, point position, point color, environment map, rendering network weights, vignetting, camera response function, per image exposure, and per image white balance. We show that our system is able to synthesize sharper and more consistent novel views than existing approaches because the initial reconstruction is refined during training. The efficient one-pixel point rasterization allows us to use arbitrary camera models and display scenes with well over 100M points in real time.
312) [2021] Fake It Till You Make It: Face analysis in the wild using synthetic data alone
Fake It Till You Make It: Face analysis in the wild using synthetic data alone
Erroll WoodTadas BaltrušaitisCharlie HewittSebastian DziadzioMatthew JohnsonVirginia EstellersThomas J. CashmanJamie Shotton
We demonstrate that it is possible to perform face-related computer vision in the wild using synthetic data alone. The community has long enjoyed the benefits of synthesizing training data with graphics, but the domain gap between real and synthetic data has remained a problem, especially for human faces. Researchers have tried to bridge this gap with data mixing, domain adaptation, and domain-adversarial training, but we show that it is possible to synthesize data with minimal domain gap, so that models trained on synthetic data generalize to real in-the-wild datasets. We describe how to combine a procedurally-generated parametric 3D face model with a comprehensive library of hand-crafted assets to render training images with unprecedented realism and diversity. We train machine learning systems for face-related tasks such as landmark localization and face parsing, showing that synthetic data can both match real data in accuracy as well as open up new approaches where manual labelling would be impossible.
moke
311) [2018] A Framework for the Quantitative Evaluation of Disentangled Representations
A Framework for the Quantitative Evaluation of Disentangled Representations
Cian EastwoodChristopher K. I. Williams
Recent AI research has emphasised the importance of learning disentangled representations of the explanatory factors behind data. Despite the growing interest in models which can learn such...
ta
310) [2021] Vision Permutator: A Permutable MLP-Like Architecture for Visual Recognition
Vision Permutator: A Permutable MLP-Like Architecture for Visual Recognition
Qibin HouZihang JiangLi YuanMing-Ming ChengShuicheng YanJiashi Feng
In this paper, we present Vision Permutator, a conceptually simple and data efficient MLP-like architecture for visual recognition. By realizing the importance of the positional information carried by 2D feature representations, unlike recent MLP-like models that encode the spatial information along the flattened spatial dimensions, Vision Permutator separately encodes the feature representations along the height and width dimensions with linear projections. This allows Vision Permutator to capture long-range dependencies along one spatial direction and meanwhile preserve precise positional information along the other direction. The resulting position-sensitive outputs are then aggregated in a mutually complementing manner to form expressive representations of the objects of interest. We show that our Vision Permutators are formidable competitors to convolutional neural networks (CNNs) and vision transformers. Without the dependence on spatial convolutions or attention mechanisms, Vision Permutator achieves 81.5% top-1 accuracy on ImageNet without extra large-scale training data (e.g., ImageNet-22k) using only 25M learnable parameters, which is much better than most CNNs and vision transformers under the same model size constraint. When scaling up to 88M, it attains 83.2% top-1 accuracy. We hope this work could encourage research on rethinking the way of encoding spatial information and facilitate the development of MLP-like models. Code is available at https://github.com/Andrew-Qibin/VisionPermutator.
ta

Tuesday 12 October 2021

309) [2017] Learning in Implicit Generative Models
Learning in Implicit Generative Models
Shakir MohamedBalaji Lakshminarayanan
Generative adversarial networks (GANs) provide an algorithmic framework for constructing generative models with several appealing properties: they do not require a likelihood function to be specified, only a generating procedure; they provide samples that are sharp and compelling; and they allow us to harness our knowledge of building highly accurate neural network classifiers. Here, we develop our understanding of GANs with the aim of forming a rich view of this growing area of machine learning---to build connections to the diverse set of statistical thinking on this topic, of which much can be gained by a mutual exchange of ideas. We frame GANs within the wider landscape of algorithms for learning in implicit generative models--models that only specify a stochastic procedure with which to generate data--and relate these ideas to modelling problems in related fields, such as econometrics and approximate Bayesian computation. We develop likelihood-free inference methods and highlight hypothesis testing as a principle for learning in implicit generative models, using which we are able to derive the objective function used by GANs, and many other related objectives. The testing viewpoint directs our focus to the general problem of density ratio estimation. There are four approaches for density ratio estimation, one of which is a solution using classifiers to distinguish real from generated data. Other approaches such as divergence minimisation and moment matching have also been explored in the GAN literature, and we synthesise these views to form an understanding in terms of the relationships between them and the wider literature, highlighting avenues for future exploration and cross-pollination.
aek

Sunday 10 October 2021

308) [2021] GAN Inversion: A Survey
GAN Inversion: A Survey
Weihao XiaYulun ZhangYujiu YangJing-Hao XueBolei ZhouMing-Hsuan Yang
GAN inversion aims to invert a given image back into the latent space of a pretrained GAN model, for the image to be faithfully reconstructed from the inverted code by the generator. As an emerging technique to bridge the real and fake image domains, GAN inversion plays an essential role in enabling the pretrained GAN models such as StyleGAN and BigGAN to be used for real image editing applications. Meanwhile, GAN inversion also provides insights on the interpretation of GAN's latent space and how the realistic images can be generated. In this paper, we provide an overview of GAN inversion with a focus on its recent algorithms and applications. We cover important techniques of GAN inversion and their applications to image restoration and image manipulation. We further elaborate on some trends and challenges for future directions.
teng
307) [2018] DeepISP: Towards Learning an End-to-End Image Processing Pipeline
DeepISP: Towards Learning an End-to-End Image Processing Pipeline
Eli SchwartzRaja GiryesAlex M. Bronstein
We present DeepISP, a full end-to-end deep neural model of the camera image signal processing (ISP) pipeline. Our model learns a mapping from the raw low-light mosaiced image to the final visually compelling image and encompasses low-level tasks such as demosaicing and denoising as well as higher-level tasks such as color correction and image adjustment. The training and evaluation of the pipeline were performed on a dedicated dataset containing pairs of low-light and well-lit images captured by a Samsung S7 smartphone camera in both raw and processed JPEG formats. The proposed solution achieves state-of-the-art performance in objective evaluation of PSNR on the subtask of joint denoising and demosaicing. For the full end-to-end pipeline, it achieves better visual quality compared to the manufacturer ISP, in both a subjective human assessment and when rated by a deep model trained for assessing image quality.
pure

Friday 08 October 2021

306) [2021] ReconfigISP: Reconfigurable Camera Image Processing Pipeline
ReconfigISP: Reconfigurable Camera Image Processing Pipeline
Ke YuZexian LiYue PengChen Change LoyJinwei Gu
Image Signal Processor (ISP) is a crucial component in digital cameras that transforms sensor signals into images for us to perceive and understand. Existing ISP designs always adopt a fixed architecture, e.g., several sequential modules connected in a rigid order. Such a fixed ISP architecture may be suboptimal for real-world applications, where camera sensors, scenes and tasks are diverse. In this study, we propose a novel Reconfigurable ISP (ReconfigISP) whose architecture and parameters can be automatically tailored to specific data and tasks. In particular, we implement several ISP modules, and enable backpropagation for each module by training a differentiable proxy, hence allowing us to leverage the popular differentiable neural architecture search and effectively search for the optimal ISP architecture. A proxy tuning mechanism is adopted to maintain the accuracy of proxy networks in all cases. Extensive experiments conducted on image restoration and object detection, with different sensors, light conditions and efficiency constraints, validate the effectiveness of ReconfigISP. Only hundreds of parameters need tuning for every task.
pure

Sunday 03 October 2021

305) [2021] USIS: Unsupervised Semantic Image Synthesis
USIS: Unsupervised Semantic Image Synthesis
George EskandarMohamed AbdelsamadKarim ArmaniousBin Yang
Semantic Image Synthesis (SIS) is a subclass of image-to-image translation where a photorealistic image is synthesized from a segmentation mask. SIS has mostly been addressed as a supervised problem. However, state-of-the-art methods depend on a huge amount of labeled data and cannot be applied in an unpaired setting. On the other hand, generic unpaired image-to-image translation frameworks underperform in comparison, because they color-code semantic layouts and feed them to traditional convolutional networks, which then learn correspondences in appearance instead of semantic content. In this initial work, we propose a new Unsupervised paradigm for Semantic Image Synthesis (USIS) as a first step towards closing the performance gap between paired and unpaired settings. Notably, the framework deploys a SPADE generator that learns to output images with visually separable semantic classes using a self-supervised segmentation loss. Furthermore, in order to match the color and texture distribution of real images without losing high-frequency information, we propose to use whole image wavelet-based discrimination. We test our methodology on 3 challenging datasets and demonstrate its ability to generate multimodal photorealistic images with an improved quality in the unpaired setting.
304) [2021] AffectGAN: Affect-Based Generative Art Driven by Semantics
AffectGAN: Affect-Based Generative Art Driven by Semantics
Theodoros GalanosAntonios LiapisGeorgios N. Yannakakis
This paper introduces a novel method for generating artistic images that express particular affective states. Leveraging state-of-the-art deep learning methods for visual generation (through generative adversarial networks), semantic models from OpenAI, and the annotated dataset of the visual art encyclopedia WikiArt, our AffectGAN model is able to generate images based on specific or broad semantic prompts and intended affective outcomes. A small dataset of 32 images generated by AffectGAN is annotated by 50 participants in terms of the particular emotion they elicit, as well as their quality and novelty. Results show that for most instances the intended emotion used as a prompt for image generation matches the participants' responses. This small-scale study brings forth a new vision towards blending affective computing with computational creativity, enabling generative systems with intentionality in terms of the emotions they wish their output to elicit.
teng
303) [2021] T\"oRF: Time-of-Flight Radiance Fields for Dynamic Scene View Synthesis
T\"oRF: Time-of-Flight Radiance Fields for Dynamic Scene View Synthesis
Benjamin AttalEliot LaidlawAaron GokaslanChangil KimChristian RichardtJames TompkinMatthew O'Toole
Neural networks can represent and accurately reconstruct radiance fields for static 3D scenes (e.g., NeRF). Several works extend these to dynamic scenes captured with monocular video, with promising performance. However, the monocular setting is known to be an under-constrained problem, and so methods rely on data-driven priors for reconstructing dynamic content. We replace these priors with measurements from a time-of-flight (ToF) camera, and introduce a neural representation based on an image formation model for continuous-wave ToF cameras. Instead of working with processed depth maps, we model the raw ToF sensor measurements to improve reconstruction quality and avoid issues with low reflectance regions, multi-path interference, and a sensor's limited unambiguous depth range. We show that this approach improves robustness of dynamic scene reconstruction to erroneous calibration and large motions, and discuss the benefits and limitations of integrating RGB+ToF sensors that are now available on modern smartphones.
teng

Monday 27 September 2021

302) [2021] Farewell to Mutual Information: Variational Distillation for Cross-Modal Person Re-Identification
Farewell to Mutual Information: Variational Distillation for Cross-Modal Person Re-Identification
Xudong TianZhizhong ZhangShaohui LinYanyun QuYuan XieLizhuang Ma
The Information Bottleneck (IB) provides an information theoretic principle for representation learning, by retaining all information relevant for predicting label while minimizing the redundancy. Though IB principle has been applied to a wide range of applications, its optimization remains a challenging problem which heavily relies on the accurate estimation of mutual information. In this paper, we present a new strategy, Variational Self-Distillation (VSD), which provides a scalable, flexible and analytic solution to essentially fitting the mutual information but without explicitly estimating it. Under rigorously theoretical guarantee, VSD enables the IB to grasp the intrinsic correlation between representation and label for supervised training. Furthermore, by extending VSD to multi-view learning, we introduce two other strategies, Variational Cross-Distillation (VCD) and Variational Mutual-Learning (VML), which significantly improve the robustness of representation to view-changes by eliminating view-specific and task-irrelevant information. To verify our theoretically grounded strategies, we apply our approaches to cross-modal person Re-ID, and conduct extensive experiments, where the superior performance against state-of-the-art methods are demonstrated. Our intriguing findings highlight the need to rethink the way to estimate mutual
aek
301) [2021] Sketch Your Own GAN
Sketch Your Own GAN
Sheng-Yu WangDavid BauJun-Yan Zhu
Can a user create a deep generative model by sketching a single example? Traditionally, creating a GAN model has required the collection of a large-scale dataset of exemplars and specialized knowledge in deep learning. In contrast, sketching is possibly the most universally accessible way to convey a visual concept. In this work, we present a method, GAN Sketching, for rewriting GANs with one or more sketches, to make GANs training easier for novice users. In particular, we change the weights of an original GAN model according to user sketches. We encourage the model's output to match the user sketches through a cross-domain adversarial loss. Furthermore, we explore different regularization methods to preserve the original model's diversity and image quality. Experiments have shown that our method can mold GANs to match shapes and poses specified by sketches while maintaining realism and diversity. Finally, we demonstrate a few applications of the resulting GAN, including latent space interpolation and image editing.
ploy
som
teng
300) [2020] One-Shot Free-View Neural Talking-Head Synthesis for Video Conferencing
One-Shot Free-View Neural Talking-Head Synthesis for Video Conferencing
Ting-Chun WangArun MallyaMing-Yu Liu
We propose a neural talking-head video synthesis model and demonstrate its application to video conferencing. Our model learns to synthesize a talking-head video using a source image containing the target person's appearance and a driving video that dictates the motion in the output. Our motion is encoded based on a novel keypoint representation, where the identity-specific and motion-related information is decomposed unsupervisedly. Extensive experimental validation shows that our model outperforms competing methods on benchmark datasets. Moreover, our compact keypoint representation enables a video conferencing system that achieves the same visual quality as the commercial H.264 standard while only using one-tenth of the bandwidth. Besides, we show our keypoint representation allows the user to rotate the head during synthesis, which is useful for simulating face-to-face video conferencing experiences.
aek
ploy
299) [2020] Differentiable Augmentation for Data-Efficient GAN Training
Differentiable Augmentation for Data-Efficient GAN Training
Shengyu ZhaoZhijian LiuJi LinJun-Yan ZhuSong Han
The performance of generative adversarial networks (GANs) heavily deteriorates given a limited amount of training data. This is mainly because the discriminator is memorizing the exact training set. To combat it, we propose Differentiable Augmentation (DiffAugment), a simple method that improves the data efficiency of GANs by imposing various types of differentiable augmentations on both real and fake samples. Previous attempts to directly augment the training data manipulate the distribution of real images, yielding little benefit; DiffAugment enables us to adopt the differentiable augmentation for the generated samples, effectively stabilizes training, and leads to better convergence. Experiments demonstrate consistent gains of our method over a variety of GAN architectures and loss functions for both unconditional and class-conditional generation. With DiffAugment, we achieve a state-of-the-art FID of 6.80 with an IS of 100.8 on ImageNet 128x128 and 2-4x reductions of FID given 1,000 images on FFHQ and LSUN. Furthermore, with only 20% training data, we can match the top performance on CIFAR-10 and CIFAR-100. Finally, our method can generate high-fidelity images using only 100 images without pre-training, while being on par with existing transfer learning algorithms. Code is available at https://github.com/mit-han-lab/data-efficient-gans.
ploy
298) [2020] Animating Pictures with Eulerian Motion Fields
Animating Pictures with Eulerian Motion Fields
Aleksander HolynskiBrian CurlessSteven M. SeitzRichard Szeliski
In this paper, we demonstrate a fully automatic method for converting a still image into a realistic animated looping video. We target scenes with continuous fluid motion, such as flowing water and billowing smoke. Our method relies on the observation that this type of natural motion can be convincingly reproduced from a static Eulerian motion description, i.e. a single, temporally constant flow field that defines the immediate motion of a particle at a given 2D location. We use an image-to-image translation network to encode motion priors of natural scenes collected from online videos, so that for a new photo, we can synthesize a corresponding motion field. The image is then animated using the generated motion through a deep warping technique: pixels are encoded as deep features, those features are warped via Eulerian motion, and the resulting warped feature maps are decoded as images. In order to produce continuous, seamlessly looping video textures, we propose a novel video looping technique that flows features both forward and backward in time and then blends the results. We demonstrate the effectiveness and robustness of our method by applying it to a large collection of examples including beaches, waterfalls, and flowing rivers.
ploy
seminar
som
297) [2021] Image Shape Manipulation from a Single Augmented Training Sample
Image Shape Manipulation from a Single Augmented Training Sample
Yael VinkerEliahu HorwitzNir ZabariYedid Hoshen
In this paper, we present DeepSIM, a generative model for conditional image manipulation based on a single image. We find that extensive augmentation is key for enabling single image training, and incorporate the use of thin-plate-spline (TPS) as an effective augmentation. Our network learns to map between a primitive representation of the image to the image itself. The choice of a primitive representation has an impact on the ease and expressiveness of the manipulations and can be automatic (e.g. edges), manual (e.g. segmentation) or hybrid such as edges on top of segmentations. At manipulation time, our generator allows for making complex image changes by modifying the primitive input representation and mapping it through the network. Our method is shown to achieve remarkable performance on image manipulation tasks.
296) [2020] Learning Robust Representations via Multi-View Information Bottleneck
Learning Robust Representations via Multi-View Information Bottleneck
Marco FedericiAnjan DuttaPatrick ForréNate KushmanZeynep Akata
The information bottleneck principle provides an information-theoretic method for representation learning, by training an encoder to retain all information which is relevant for predicting the label while minimizing the amount of other, excess information in the representation. The original formulation, however, requires labeled data to identify the superfluous information. In this work, we extend this ability to the multi-view unsupervised setting, where two views of the same underlying entity are provided but the label is unknown. This enables us to identify superfluous information as that not shared by both views. A theoretical analysis leads to the definition of a new multi-view model that produces state-of-the-art results on the Sketchy dataset and label-limited versions of the MIR-Flickr dataset. We also extend our theory to the single-view setting by taking advantage of standard data augmentation techniques, empirically showing better generalization capabilities when compared to common unsupervised approaches for representation learning.
aek
295) [2021] Improving Compositionality of Neural Networks by Decoding Representations to Inputs
Improving Compositionality of Neural Networks by Decoding Representations to Inputs
Mike WuNoah GoodmanStefano Ermon
In traditional software programs, we take for granted how easy it is to debug code by tracing program logic from variables back to input, apply unit tests and assertion statements to block erroneous behavior, and compose programs together. But as the programs we write grow more complex, it becomes hard to apply traditional software to applications like computer vision or natural language. Although deep learning programs have demonstrated strong performance on these applications, they sacrifice many of the functionalities of traditional software programs. In this paper, we work towards bridging the benefits of traditional and deep learning programs by jointly training a generative model to constrain neural network activations to "decode" back to inputs. Doing so enables practitioners to probe and track information encoded in activation(s), apply assertion-like constraints on what information is encoded in an activation, and compose separate neural networks together in a plug-and-play fashion. In our experiments, we demonstrate applications of decodable representations to out-of-distribution detection, adversarial examples, calibration, and fairness -- while matching standard neural networks in accuracy.
aek
294) [2021] Embedding Novel Views in a Single JPEG Image
Embedding Novel Views in a Single JPEG Image
Yue WuGuotao MengQifeng Chen
We propose a novel approach for embedding novel views in a single JPEG image while preserving the perceptual fidelity of the modified JPEG image and the restored novel views. We adopt the popular novel view synthesis representation of multiplane images (MPIs). Our model first encodes 32 MPI layers (totally 128 channels) into a 3-channel JPEG image that can be decoded for MPIs to render novel views, with an embedding capacity of 1024 bits per pixel. We conducted experiments on public datasets with different novel view synthesis methods, and the results show that the proposed method can restore high-fidelity novel views from a slightly modified JPEG image. Furthermore, our method is robust to JPEG compression, color adjusting, and cropping. Our source code will be publicly available.
pure
teng

Tuesday 21 September 2021

293) [2021] FreeStyleGAN: Free-view Editable Portrait Rendering with the Camera Manifold
FreeStyleGAN: Free-view Editable Portrait Rendering with the Camera Manifold
Thomas LeimkühlerGeorge Drettakis
Current Generative Adversarial Networks (GANs) produce photorealistic renderings of portrait images. Embedding real images into the latent space of such models enables high-level image editing. While recent methods provide considerable semantic control over the (re-)generated images, they can only generate a limited set of viewpoints and cannot explicitly control the camera. Such 3D camera control is required for 3D virtual and mixed reality applications. In our solution, we use a few images of a face to perform 3D reconstruction, and we introduce the notion of the GAN camera manifold, the key element allowing us to precisely define the range of images that the GAN can reproduce in a stable manner. We train a small face-specific neural implicit representation network to map a captured face to this manifold and complement it with a warping scheme to obtain free-viewpoint novel-view synthesis. We show how our approach - due to its precise camera control - enables the integration of a pre-trained StyleGAN into standard 3D rendering pipelines, allowing e.g., stereo rendering or consistent insertion of faces in synthetic 3D environments. Our solution proposes the first truly free-viewpoint rendering of realistic faces at interactive rates, using only a small number of casual photos as input, while simultaneously allowing semantic editing capabilities, such as facial expression or lighting changes.
teng
292) [2021] Self-Calibrating Neural Radiance Fields
Self-Calibrating Neural Radiance Fields
Yoonwoo JeongSeokjun AhnChristopher ChoyAnimashree AnandkumarMinsu ChoJaesik Park
In this work, we propose a camera self-calibration algorithm for generic cameras with arbitrary non-linear distortions. We jointly learn the geometry of the scene and the accurate camera parameters without any calibration objects. Our camera model consists of a pinhole model, a fourth order radial distortion, and a generic noise model that can learn arbitrary non-linear camera distortions. While traditional self-calibration algorithms mostly rely on geometric constraints, we additionally incorporate photometric consistency. This requires learning the geometry of the scene, and we use Neural Radiance Fields (NeRF). We also propose a new geometric loss function, viz., projected ray distance loss, to incorporate geometric consistency for complex non-linear camera models. We validate our approach on standard real image datasets and demonstrate that our model can learn the camera intrinsics and extrinsics (pose) from scratch without COLMAP initialization. Also, we show that learning accurate camera models in a differentiable manner allows us to improve PSNR over baselines. Our module is an easy-to-use plugin that can be applied to NeRF variants to improve performance. The code and data are currently available at https://github.com/POSTECH-CVLab/SCNeRF
pure
teng

Monday 20 September 2021

291) Full Text PDF
Full Text PDF

Friday 17 September 2021

290) [2021] Resolution-robust Large Mask Inpainting with Fourier Convolutions
Resolution-robust Large Mask Inpainting with Fourier Convolutions
Roman SuvorovElizaveta LogachevaAnton MashikhinAnastasia RemizovaArsenii AshukhaAleksei SilvestrovNaejin KongHarshith GokaKiwoong ParkVictor Lempitsky
Modern image inpainting systems, despite the significant progress, often struggle with large missing areas, complex geometric structures, and high-resolution images. We find that one of the main reasons for that is the lack of an effective receptive field in both the inpainting network and the loss function. To alleviate this issue, we propose a new method called large mask inpainting (LaMa). LaMa is based on i) a new inpainting network architecture that uses fast Fourier convolutions, which have the image-wide receptive field; ii) a high receptive field perceptual loss; and iii) large training masks, which unlocks the potential of the first two components. Our inpainting network improves the state-of-the-art across a range of datasets and achieves excellent performance even in challenging scenarios, e.g. completion of periodic structures. Our model generalizes surprisingly well to resolutions that are higher than those seen at train time, and achieves this at lower parameter&compute costs than the competitive baselines. The code is available at https://github.com/saic-mdal/lama.
teng

Thursday 16 September 2021

289) [2021] Instance-Conditioned GAN
Instance-Conditioned GAN
Arantxa CasanovaMarlène CareilJakob VerbeekMichal DrozdzalAdriana Romero-Soriano
Generative Adversarial Networks (GANs) can generate near photo realistic images in narrow domains such as human faces. Yet, modeling complex distributions of datasets such as ImageNet and COCO-Stuff remains challenging in unconditional settings. In this paper, we take inspiration from kernel density estimation techniques and introduce a non-parametric approach to modeling distributions of complex datasets. We partition the data manifold into a mixture of overlapping neighborhoods described by a datapoint and its nearest neighbors, and introduce a model, called instance-conditioned GAN (IC-GAN), which learns the distribution around each datapoint. Experimental results on ImageNet and COCO-Stuff show that IC-GAN significantly improves over unconditional models and unsupervised data partitioning baselines. Moreover, we show that IC-GAN can effortlessly transfer to datasets not seen during training by simply changing the conditioning instances, and still generate realistic images. Finally, we extend IC-GAN to the class-conditional case and show semantically controllable generation and competitive quantitative results on ImageNet; while improving over BigGAN on ImageNet-LT. We will opensource our code and trained models to reproduce the reported results.
teng

Wednesday 15 September 2021

288) [2021] Multiresolution Deep Implicit Functions for 3D Shape Representation
Multiresolution Deep Implicit Functions for 3D Shape Representation
Zhang ChenYinda ZhangKyle GenovaSean FanelloSofien BouazizChristian HaeneRuofei DuCem KeskinThomas FunkhouserDanhang Tang
We introduce Multiresolution Deep Implicit Functions (MDIF), a hierarchical representation that can recover fine geometry detail, while being able to perform global operations such as shape completion. Our model represents a complex 3D shape with a hierarchy of latent grids, which can be decoded into different levels of detail and also achieve better accuracy. For shape completion, we propose latent grid dropout to simulate partial data in the latent space and therefore defer the completing functionality to the decoder side. This along with our multires design significantly improves the shape completion quality under decoder-only latent optimization. To the best of our knowledge, MDIF is the first deep implicit function model that can at the same time (1) represent different levels of detail and allow progressive decoding; (2) support both encoder-decoder inference and decoder-only latent optimization, and fulfill multiple applications; (3) perform detailed decoder-only shape completion. Experiments demonstrate its superior performance against prior art in various 3D reconstruction tasks.
287) [2021] Robust fine-tuning of zero-shot models
Robust fine-tuning of zero-shot models
Mitchell WortsmanGabriel IlharcoMike LiJong Wook KimHannaneh HajishirziAli FarhadiHongseok NamkoongLudwig Schmidt
Large pre-trained models such as CLIP offer consistent accuracy across a range of data distributions when performing zero-shot inference (i.e., without fine-tuning on a specific dataset). Although existing fine-tuning approaches substantially improve accuracy in-distribution, they also reduce out-of-distribution robustness. We address this tension by introducing a simple and effective method for improving robustness: ensembling the weights of the zero-shot and fine-tuned models. Compared to standard fine-tuning, the resulting weight-space ensembles provide large accuracy improvements out-of-distribution, while matching or improving in-distribution accuracy. On ImageNet and five derived distribution shifts, weight-space ensembles improve out-of-distribution accuracy by 2 to 10 percentage points while increasing in-distribution accuracy by nearly 1 percentage point relative to standard fine-tuning. These improvements come at no additional computational cost during fine-tuning or inference.
teng
286) [2021] AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis
AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis
Yudong GuoKeyu ChenSen LiangYong-Jin LiuHujun BaoJuyong Zhang
Generating high-fidelity talking head video by fitting with the input audio sequence is a challenging problem that receives considerable attentions recently. In this paper, we address this problem with the aid of neural scene representation networks. Our method is completely different from existing methods that rely on intermediate representations like 2D landmarks or 3D face models to bridge the gap between audio input and video output. Specifically, the feature of input audio signal is directly fed into a conditional implicit function to generate a dynamic neural radiance field, from which a high-fidelity talking-head video corresponding to the audio signal is synthesized using volume rendering. Another advantage of our framework is that not only the head (with hair) region is synthesized as previous methods did, but also the upper body is generated via two individual neural radiance fields. Experimental results demonstrate that our novel framework can (1) produce high-fidelity and natural results, and (2) support free adjustment of audio signals, viewing directions, and background images. Code is available at https://github.com/YudongGuo/AD-NeRF.
ploy

Wednesday 08 September 2021

285) [2021] STRIVE: Scene Text Replacement In Videos
STRIVE: Scene Text Replacement In Videos
Vijay Kumar B. GJeyasri SubramanianVarnith ChordiaEugene BartShaobo FangKelly GuanRaja Bala
We propose replacing scene text in videos using deep style transfer and learned photometric transformations.Building on recent progress on still image text replacement,we present extensions that alter text while preserving the appearance and motion characteristics of the original video.Compared to the problem of still image text replacement,our method addresses additional challenges introduced by video, namely effects induced by changing lighting, motion blur, diverse variations in camera-object pose over time,and preservation of temporal consistency. We parse the problem into three steps. First, the text in all frames is normalized to a frontal pose using a spatio-temporal trans-former network. Second, the text is replaced in a single reference frame using a state-of-art still-image text replacement method. Finally, the new text is transferred from the reference to remaining frames using a novel learned image transformation network that captures lighting and blur effects in a temporally consistent manner. Results on synthetic and challenging real videos show realistic text trans-fer, competitive quantitative and qualitative performance,and superior inference speed relative to alternatives. We introduce new synthetic and real-world datasets with paired text objects. To the best of our knowledge this is the first attempt at deep video text replacement.
284) [2021] CodeNeRF: Disentangled Neural Radiance Fields for Object Categories
CodeNeRF: Disentangled Neural Radiance Fields for Object Categories
Wonbong JangLourdes Agapito
CodeNeRF is an implicit 3D neural representation that learns the variation of object shapes and textures across a category and can be trained, from a set of posed images, to synthesize novel views of unseen objects. Unlike the original NeRF, which is scene specific, CodeNeRF learns to disentangle shape and texture by learning separate embeddings. At test time, given a single unposed image of an unseen object, CodeNeRF jointly estimates camera viewpoint, and shape and appearance codes via optimization. Unseen objects can be reconstructed from a single image, and then rendered from new viewpoints or their shape and texture edited by varying the latent codes. We conduct experiments on the SRN benchmark, which show that CodeNeRF generalises well to unseen objects and achieves on-par performance with methods that require known camera pose at test time. Our results on real-world images demonstrate that CodeNeRF can bridge the sim-to-real gap. Project page: \url{https://github.com/wayne1123/code-nerf}
pure

Tuesday 07 September 2021

283) [2017] Disentangled Representation Learning GAN for Pose-Invariant Face Recognition
Disentangled Representation Learning GAN for Pose-Invariant Face Recognition
Luan TranXi YinXiaoming Liu
ness
282) [2021] Point-Based Neural Rendering with Per-View Optimization
Point-Based Neural Rendering with Per-View Optimization
Georgios KopanasJulien PhilipThomas LeimkühlerGeorge Drettakis
There has recently been great interest in neural rendering methods. Some approaches use 3D geometry reconstructed with Multi-View Stereo (MVS) but cannot recover from the errors of this process, while others directly learn a volumetric neural representation, but suffer from expensive training and inference. We introduce a general approach that is initialized with MVS, but allows further optimization of scene properties in the space of input views, including depth and reprojected features, resulting in improved novel-view synthesis. A key element of our approach is our new differentiable point-based pipeline, based on bi-directional Elliptical Weighted Average splatting, a probabilistic depth test and effective camera selection. We use these elements together in our neural renderer, that outperforms all previous methods both in quality and speed in almost all scenes we tested. Our pipeline can be applied to multi-view harmonization and stylization in addition to novel-view synthesis.
teng
281) [2021] Learning Object-Compositional Neural Radiance Field for Editable Scene Rendering
Learning Object-Compositional Neural Radiance Field for Editable Scene Rendering
Bangbang YangYinda ZhangYinghao XuYijin LiHan ZhouHujun BaoGuofeng ZhangZhaopeng Cui
Implicit neural rendering techniques have shown promising results for novel view synthesis. However, existing methods usually encode the entire scene as a whole, which is generally not aware of the object identity and limits the ability to the high-level editing tasks such as moving or adding furniture. In this paper, we present a novel neural scene rendering system, which learns an object-compositional neural radiance field and produces realistic rendering with editing capability for a clustered and real-world scene. Specifically, we design a novel two-pathway architecture, in which the scene branch encodes the scene geometry and appearance, and the object branch encodes each standalone object conditioned on learnable object activation codes. To survive the training in heavily cluttered scenes, we propose a scene-guided training strategy to solve the 3D space ambiguity in the occluded regions and learn sharp boundaries for each object. Extensive experiments demonstrate that our system not only achieves competitive performance for static scene novel-view synthesis, but also produces realistic rendering for object-level editing.
teng

Monday 06 September 2021

280) [2021] D2C: Diffusion-Denoising Models for Few-shot Conditional Generation
D2C: Diffusion-Denoising Models for Few-shot Conditional Generation
Abhishek SinhaJiaming SongChenlin MengStefano Ermon
Conditional generative models of high-dimensional images have many applications, but supervision signals from conditions to images can be expensive to acquire. This paper describes Diffusion-Decoding models with Contrastive representations (D2C), a paradigm for training unconditional variational autoencoders (VAEs) for few-shot conditional image generation. D2C uses a learned diffusion-based prior over the latent representations to improve generation and contrastive self-supervised learning to improve representation quality. D2C can adapt to novel generation tasks conditioned on labels or manipulation constraints, by learning from as few as 100 labeled examples. On conditional generation from new labels, D2C achieves superior performance over state-of-the-art VAEs and diffusion models. On conditional image manipulation, D2C generations are two orders of magnitude faster to produce over StyleGAN2 ones and are preferred by 50% - 60% of the human evaluators in a double-blind study.
aek
ta
279) [2017] Guiding InfoGAN with Semi-Supervision
Guiding InfoGAN with Semi-Supervision
Adrian SpurrEmre AksanOtmar Hilliges
In this paper we propose a new semi-supervised GAN architecture (ss-InfoGAN) for image synthesis that leverages information from few labels (as little as 0.22%, max. 10% of the dataset) to learn semantically meaningful and controllable data representations where latent variables correspond to label categories. The architecture builds on Information Maximizing Generative Adversarial Networks (InfoGAN) and is shown to learn both continuous and categorical codes and achieves higher quality of synthetic samples compared to fully unsupervised settings. Furthermore, we show that using small amounts of labeled data speeds-up training convergence. The architecture maintains the ability to disentangle latent variables for which no labels are available. Finally, we contribute an information-theoretic reasoning on how introducing semi-supervision increases mutual information between synthetic and real data.
ness
278) [2016] InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
Xi ChenYan DuanRein HouthooftJohn SchulmanIlya SutskeverPieter Abbeel
This paper describes InfoGAN, an information-theoretic extension to the Generative Adversarial Network that is able to learn disentangled representations in a completely unsupervised manner. InfoGAN is a generative adversarial network that also maximizes the mutual information between a small subset of the latent variables and the observation. We derive a lower bound to the mutual information objective that can be optimized efficiently, and show that our training procedure can be interpreted as a variation of the Wake-Sleep algorithm. Specifically, InfoGAN successfully disentangles writing styles from digit shapes on the MNIST dataset, pose from lighting of 3D rendered images, and background digits from the central digit on the SVHN dataset. It also discovers visual concepts that include hair styles, presence/absence of eyeglasses, and emotions on the CelebA face dataset. Experiments show that InfoGAN learns interpretable representations that are competitive with representations learned by existing fully supervised methods.
aek
ness
ta
277) [2020] What Do Neural Networks Learn When Trained With Random Labels?
What Do Neural Networks Learn When Trained With Random Labels?
Hartmut MaennelIbrahim AlabdulmohsinIlya TolstikhinRobert J. N. BaldockOlivier BousquetSylvain GellyDaniel Keysers
We study deep neural networks (DNNs) trained on natural image data with entirely random labels. Despite its popularity in the literature, where it is often used to study memorization, generalization, and other phenomena, little is known about what DNNs learn in this setting. In this paper, we show analytically for convolutional and fully connected networks that an alignment between the principal components of network parameters and data takes place when training with random labels. We study this alignment effect by investigating neural networks pre-trained on randomly labelled image data and subsequently fine-tuned on disjoint datasets with random or real labels. We show how this alignment produces a positive transfer: networks pre-trained with random labels train faster downstream compared to training from scratch even after accounting for simple effects, such as weight scaling. We analyze how competing effects, such as specialization at later layers, may hide the positive transfer. These effects are studied in several network architectures, including VGG16 and ResNet18, on CIFAR10 and ImageNet.
aek
276) [2021] Simple and Effective VAE Training with Calibrated Decoders
Simple and Effective VAE Training with Calibrated Decoders
Oleh RybkinKostas DaniilidisSergey Levine
Variational autoencoders (VAEs) provide an effective and simple method for modeling complex distributions. However, training VAEs often requires considerable hyperparameter tuning to determine the ...
ta

Sunday 05 September 2021

275) [2020] Learning View-Disentangled Human Pose Representation by Contrastive Cross-View Mutual Information Maximization
Learning View-Disentangled Human Pose Representation by Contrastive Cross-View Mutual Information Maximization
Long ZhaoYuxiao WangJiaping ZhaoLiangzhe YuanJennifer J. SunFlorian SchroffHartwig AdamXi PengDimitris MetaxasTing Liu
We introduce a novel representation learning method to disentangle pose-dependent as well as view-dependent factors from 2D human poses. The method trains a network using cross-view mutual information maximization (CV-MIM) which maximizes mutual information of the same pose performed from different viewpoints in a contrastive learning manner. We further propose two regularization terms to ensure disentanglement and smoothness of the learned representations. The resulting pose representations can be used for cross-view action recognition. To evaluate the power of the learned representations, in addition to the conventional fully-supervised action recognition settings, we introduce a novel task called single-shot cross-view action recognition. This task trains models with actions from only one single viewpoint while models are evaluated on poses captured from all possible viewpoints. We evaluate the learned representations on standard benchmarks for action recognition, and show that (i) CV-MIM performs competitively compared with the state-of-the-art models in the fully-supervised scenarios; (ii) CV-MIM outperforms other competing methods by a large margin in the single-shot cross-view setting; (iii) and the learned representations can significantly boost the performance when reducing the amount of supervised training data. Our code is made publicly available at https://github.com/google-research/google-research/tree/master/poem
ness
274) [2020] A Commentary on the Unsupervised Learning of Disentangled Representations
A Commentary on the Unsupervised Learning of Disentangled Representations
Francesco LocatelloStefan BauerMario LucicGunnar RätschSylvain GellyBernhard SchölkopfOlivier Bachem
The goal of the unsupervised learning of disentangled representations is to separate the independent explanatory factors of variation in the data without access to supervision. In this paper, we summarize the results of Locatello et al., 2019, and focus on their implications for practitioners. We discuss the theoretical result showing that the unsupervised learning of disentangled representations is fundamentally impossible without inductive biases and the practical challenges it entails. Finally, we comment on our experimental findings, highlighting the limitations of state-of-the-art approaches and directions for future research.
ness

Saturday 04 September 2021

273) [2020] Deep Learning-Based Human Pose Estimation: A Survey
Deep Learning-Based Human Pose Estimation: A Survey
Ce ZhengWenhan WuTaojiannan YangSijie ZhuChen ChenRuixu LiuJu ShenNasser KehtarnavazMubarak Shah
Human pose estimation aims to locate the human body parts and build human body representation (e.g., body skeleton) from input data such as images and videos. It has drawn increasing attention during the past decade and has been utilized in a wide range of applications including human-computer interaction, motion analysis, augmented reality, and virtual reality. Although the recently developed deep learning-based solutions have achieved high performance in human pose estimation, there still remain challenges due to insufficient training data, depth ambiguities, and occlusion. The goal of this survey paper is to provide a comprehensive review of recent deep learning-based solutions for both 2D and 3D pose estimation via a systematic analysis and comparison of these solutions based on their input data and inference procedures. More than 240 research papers since 2014 are covered in this survey. Furthermore, 2D and 3D human pose estimation datasets and evaluation metrics are included. Quantitative performance comparisons of the reviewed methods on popular datasets are summarized and discussed. Finally, the challenges involved, applications, and future research directions are concluded. We also provide a regularly updated project page: \url{https://github.com/zczcwh/DL-HPE}
ness
272) [2021] Domain Invariant Adversarial Learning
Domain Invariant Adversarial Learning
Matan LeviIdan AttiasAryeh Kontorovich
The phenomenon of adversarial examples illustrates one of the most basic vulnerabilities of deep neural networks. Among the variety of techniques introduced to surmount this inherent weakness, adversarial training has emerged as the most common and efficient strategy to achieve robustness. Typically, this is achieved by balancing robust and natural objectives. In this work, we aim to achieve better trade-off between robust and natural performances by enforcing a domain-invariant feature representation. We present a new adversarial training method, Domain Invariant Adversarial Learning (DIAL), which learns a feature representation which is both robust and domain invariant. DIAL uses a variant of Domain Adversarial Neural Network (DANN) on the natural domain and its corresponding adversarial domain. In a case where the source domain consists of natural examples and the target domain is the adversarially perturbed examples, our method learns a feature representation constrained not to discriminate between the natural and adversarial examples, and can therefore achieve a more robust representation. Our experiments indicate that our method improves both robustness and natural accuracy, when compared to current state-of-the-art adversarial training methods.
ness
271) [2017] In Defense of the Triplet Loss for Person Re-Identification
In Defense of the Triplet Loss for Person Re-Identification
Alexander HermansLucas BeyerBastian Leibe
In the past few years, the field of computer vision has gone through a revolution fueled mainly by the advent of large datasets and the adoption of deep convolutional neural networks for end-to-end learning. The person re-identification subfield is no exception to this. Unfortunately, a prevailing belief in the community seems to be that the triplet loss is inferior to using surrogate losses (classification, verification) followed by a separate metric learning step. We show that, for models trained from scratch as well as pretrained ones, using a variant of the triplet loss to perform end-to-end deep metric learning outperforms most other published methods by a large margin.
ness
270) [2019] Viewpoint-Aware Loss with Angular Regularization for Person Re-Identification
Viewpoint-Aware Loss with Angular Regularization for Person Re-Identification
Zhihui ZhuXinyang JiangFeng ZhengXiaowei GuoFeiyue HuangWeishi ZhengXing Sun
Although great progress in supervised person re-identification (Re-ID) has been made recently, due to the viewpoint variation of a person, Re-ID remains a massive visual challenge. Most existing viewpoint-based person Re-ID methods project images from each viewpoint into separated and unrelated sub-feature spaces. They only model the identity-level distribution inside an individual viewpoint but ignore the underlying relationship between different viewpoints. To address this problem, we propose a novel approach, called \textit{Viewpoint-Aware Loss with Angular Regularization }(\textbf{VA-reID}). Instead of one subspace for each viewpoint, our method projects the feature from different viewpoints into a unified hypersphere and effectively models the feature distribution on both the identity-level and the viewpoint-level. In addition, rather than modeling different viewpoints as hard labels used for conventional viewpoint classification, we introduce viewpoint-aware adaptive label smoothing regularization (VALSR) that assigns the adaptive soft label to feature representation. VALSR can effectively solve the ambiguity of the viewpoint cluster label assignment. Extensive experiments on the Market1501 and DukeMTMC-reID datasets demonstrated that our method outperforms the state-of-the-art supervised Re-ID methods.
ness
269) [2020] Adversarial Self-Supervised Contrastive Learning
Adversarial Self-Supervised Contrastive Learning
Minseon KimJihoon TackSung Ju Hwang
Existing adversarial learning approaches mostly use class labels to generate adversarial samples that lead to incorrect predictions, which are then used to augment the training of the model for improved robustness. While some recent works propose semi-supervised adversarial learning methods that utilize unlabeled data, they still require class labels. However, do we really need class labels at all, for adversarially robust training of deep neural networks? In this paper, we propose a novel adversarial attack for unlabeled data, which makes the model confuse the instance-level identities of the perturbed data samples. Further, we present a self-supervised contrastive learning framework to adversarially train a robust neural network without labeled data, which aims to maximize the similarity between a random augmentation of a data sample and its instance-wise adversarial perturbation. We validate our method, Robust Contrastive Learning (RoCL), on multiple benchmark datasets, on which it obtains comparable robust accuracy over state-of-the-art supervised adversarial learning methods, and significantly improved robustness against the black box and unseen types of attacks. Moreover, with further joint fine-tuning with supervised adversarial loss, RoCL obtains even higher robust accuracy over using self-supervised learning alone. Notably, RoCL also demonstrate impressive results in robust transfer learning.
ness
268) [2017] Beyond Part Models: Person Retrieval with Refined Part Pooling (and a Strong Convolutional Baseline)
Beyond Part Models: Person Retrieval with Refined Part Pooling (and a Strong Convolutional Baseline)
Yifan SunLiang ZhengYi YangQi TianShengjin Wang
Employing part-level features for pedestrian image description offers fine-grained information and has been verified as beneficial for person retrieval in very recent literature. A prerequisite of part discovery is that each part should be well located. Instead of using external cues, e.g., pose estimation, to directly locate parts, this paper lays emphasis on the content consistency within each part. Specifically, we target at learning discriminative part-informed features for person retrieval and make two contributions. (i) A network named Part-based Convolutional Baseline (PCB). Given an image input, it outputs a convolutional descriptor consisting of several part-level features. With a uniform partition strategy, PCB achieves competitive results with the state-of-the-art methods, proving itself as a strong convolutional baseline for person retrieval. (ii) A refined part pooling (RPP) method. Uniform partition inevitably incurs outliers in each part, which are in fact more similar to other parts. RPP re-assigns these outliers to the parts they are closest to, resulting in refined parts with enhanced within-part consistency. Experiment confirms that RPP allows PCB to gain another round of performance boost. For instance, on the Market-1501 dataset, we achieve (77.4+4.2)% mAP and (92.3+1.5)% rank-1 accuracy, surpassing the state of the art by a large margin.
ness
267) [2019] View Invariant 3D Human Pose Estimation
View Invariant 3D Human Pose Estimation
Guoqiang WeiCuiling LanWenjun ZengZhibo Chen
The recent success of deep networks has significantly advanced 3D human pose estimation from 2D images. The diversity of capturing viewpoints and the flexibility of the human poses, however, remain some significant challenges. In this paper, we propose a view invariant 3D human pose estimation module to alleviate the effects of viewpoint diversity. The framework consists of a base network, which provides an initial estimation of a 3D pose, a view-invariant hierarchical correction network (VI-HC) on top of that to learn the 3D pose refinement under consistent views, and a view-invariant discriminative network (VID) to enforce high-level constraints over body configurations. In VI-HC, the initial 3D pose inputs are automatically transformed to consistent views for further refinements at the global body and local body parts level, respectively. For the VID, under consistent viewpoints, we use adversarial learning to differentiate between estimated poses and real poses to avoid implausible 3D poses. Experimental results demonstrate that the consistent viewpoints can dramatically enhance the performance. Our module shows robustness for different 3D pose base networks and achieves a significant improvement (about 9%) over a powerful baseline on the public 3D pose estimation benchmark Human3.6M.
ness
266) [2014] Discovering Hidden Factors of Variation in Deep Networks
Discovering Hidden Factors of Variation in Deep Networks
Brian CheungJesse A. LivezeyArjun K. BansalBruno A. Olshausen
Deep learning has enjoyed a great deal of success because of its ability to learn useful features for tasks such as classification. But there has been less exploration in learning the factors of variation apart from the classification signal. By augmenting autoencoders with simple regularization terms during training, we demonstrate that standard deep architectures can discover and explicitly represent factors of variation beyond those relevant for categorization. We introduce a cross-covariance penalty (XCov) as a method to disentangle factors like handwriting style for digits and subject identity in faces. We demonstrate this on the MNIST handwritten digit database, the Toronto Faces Database (TFD) and the Multi-PIE dataset by generating manipulated instances of the data. Furthermore, we demonstrate these deep networks can extrapolate `hidden' variation in the supervised signal.
ness
265) [2016] NIPS 2016 Tutorial: Generative Adversarial Networks
NIPS 2016 Tutorial: Generative Adversarial Networks
Ian Goodfellow
This report summarizes the tutorial presented by the author at NIPS 2016 on generative adversarial networks (GANs). The tutorial describes: (1) Why generative modeling is a topic worth studying, (2) how generative models work, and how GANs compare to other generative models, (3) the details of how GANs work, (4) research frontiers in GANs, and (5) state-of-the-art image models that combine GANs with other methods. Finally, the tutorial contains three exercises for readers to complete, and the solutions to these exercises.
ness
ta
264) [2015] SMPL: a skinned multi-person linear model
SMPL: a skinned multi-person linear model
Matthew LoperNaureen MahmoodJavier RomeroGerard Pons-MollMichael J. Black
We present a learned model of human body shape and posedependent shape variation that is more accurate than previous models and is compatible with existing graphics pipelines. Our Skinned Multi-Person Linear model (SMPL) is a skinned vertexbased model that accurately represents a wide variety of body shapes in natural human poses. The parameters of the model are learned from data including the rest pose template, blend weights, pose-dependent blend shapes, identity-dependent blend shapes, and a regressor from vertices to joint locations. Unlike previous models, the pose-dependent blend shapes are a linear function of the elements of the pose rotation matrices. This simple formulation enables training the entire model from a relatively large number of aligned 3D meshes of different people in different poses. We quantitatively evaluate variants of SMPL using linear or dual-quaternion blend skinning and show that both are more accurate than a BlendSCAPE model trained on the same data. We also extend SMPL to realistically model dynamic soft-tissue deformations. Because it is based on blend skinning, SMPL is compatible with existing rendering engines and we make it available for research purposes.
ness
263) [2016] Adversarial Machine Learning at Scale
Adversarial Machine Learning at Scale
Alexey KurakinIan GoodfellowSamy Bengio
Adversarial examples are malicious inputs designed to fool machine learning models. They often transfer from one model to another, allowing attackers to mount black box attacks without knowledge of the target model's parameters. Adversarial training is the process of explicitly training a model on adversarial examples, in order to make it more robust to attack or to reduce its test error on clean inputs. So far, adversarial training has primarily been applied to small problems. In this research, we apply adversarial training to ImageNet. Our contributions include: (1) recommendations for how to succesfully scale adversarial training to large models and datasets, (2) the observation that adversarial training confers robustness to single-step attack methods, (3) the finding that multi-step attack methods are somewhat less transferable than single-step attack methods, so single-step attacks are the best for mounting black-box attacks, and (4) resolution of a "label leaking" effect that causes adversarially trained models to perform better on adversarial examples than on clean examples, because the adversarial example construction process uses the true label and the model can learn to exploit regularities in the construction process.
ness
262) [2015] Rethinking the Inception Architecture for Computer Vision
Rethinking the Inception Architecture for Computer Vision
Christian SzegedyVincent VanhouckeSergey IoffeJonathon ShlensZbigniew Wojna
Convolutional networks are at the core of most state-of-the-art computer vision solutions for a wide variety of tasks. Since 2014 very deep convolutional networks started to become mainstream, yielding substantial gains in various benchmarks. Although increased model size and computational cost tend to translate to immediate quality gains for most tasks (as long as enough labeled data is provided for training), computational efficiency and low parameter count are still enabling factors for various use cases such as mobile vision and big-data scenarios. Here we explore ways to scale up networks in ways that aim at utilizing the added computation as efficiently as possible by suitably factorized convolutions and aggressive regularization. We benchmark our methods on the ILSVRC 2012 classification challenge validation set demonstrate substantial gains over the state of the art: 21.2% top-1 and 5.6% top-5 error for single frame evaluation using a network with a computational cost of 5 billion multiply-adds per inference and with using less than 25 million parameters. With an ensemble of 4 models and multi-crop evaluation, we report 3.5% top-5 error on the validation set (3.6% error on the test set) and 17.3% top-1 error on the validation set.
ness
261) [2020] GHUM & GHUML: Generative 3D Human Shape and Articulated Pose Models
GHUM & GHUML: Generative 3D Human Shape and Articulated Pose Models
Hongyi XuEduard Gabriel BazavanAndrei ZanfirWilliam T. FreemanRahul SukthankarCristian Sminchisescu
ness
260) [2015] Reducing Overfitting in Deep Networks by Decorrelating Representations
Reducing Overfitting in Deep Networks by Decorrelating Representations
Michael CogswellFaruk AhmedRoss GirshickLarry ZitnickDhruv Batra
One major challenge in training Deep Neural Networks is preventing overfitting. Many techniques such as data augmentation and novel regularizers such as Dropout have been proposed to prevent overfitting without requiring a massive amount of training data. In this work, we propose a new regularizer called DeCov which leads to significantly reduced overfitting (as indicated by the difference between train and val performance), and better generalization. Our regularizer encourages diverse or non-redundant representations in Deep Neural Networks by minimizing the cross-covariance of hidden activations. This simple intuition has been explored in a number of past works but surprisingly has never been applied as a regularizer in supervised learning. Experiments across a range of datasets and network architectures show that this loss always reduces overfitting while almost always maintaining or increasing generalization performance and often improving performance over Dropout.
ness
259) [2014] Explaining and Harnessing Adversarial Examples
Explaining and Harnessing Adversarial Examples
Ian J. GoodfellowJonathon ShlensChristian Szegedy
Several machine learning models, including neural networks, consistently misclassify adversarial examples---inputs formed by applying small but intentionally worst-case perturbations to examples from the dataset, such that the perturbed input results in the model outputting an incorrect answer with high confidence. Early attempts at explaining this phenomenon focused on nonlinearity and overfitting. We argue instead that the primary cause of neural networks' vulnerability to adversarial perturbation is their linear nature. This explanation is supported by new quantitative results while giving the first explanation of the most intriguing fact about them: their generalization across architectures and training sets. Moreover, this view yields a simple and fast method of generating adversarial examples. Using this approach to provide examples for adversarial training, we reduce the test set error of a maxout network on the MNIST dataset.
ness
258) [2014] Generative Adversarial Networks
Generative Adversarial Networks
Ian J. GoodfellowJean Pouget-AbadieMehdi MirzaBing XuDavid Warde-FarleySherjil OzairAaron CourvilleYoshua Bengio
We propose a new framework for estimating generative models via an adversarial process, in which we simultaneously train two models: a generative model G that captures the data distribution, and a discriminative model D that estimates the probability that a sample came from the training data rather than G. The training procedure for G is to maximize the probability of D making a mistake. This framework corresponds to a minimax two-player game. In the space of arbitrary functions G and D, a unique solution exists, with G recovering the training data distribution and D equal to 1/2 everywhere. In the case where G and D are defined by multilayer perceptrons, the entire system can be trained with backpropagation. There is no need for any Markov chains or unrolled approximate inference networks during either training or generation of samples. Experiments demonstrate the potential of the framework through qualitative and quantitative evaluation of the generated samples.
ness
ta
257) [2020] Deep Learning for Person Re-identification: A Survey and Outlook
Deep Learning for Person Re-identification: A Survey and Outlook
Mang YeJianbing ShenGaojie LinTao XiangLing ShaoSteven C. H. Hoi
Person re-identification (Re-ID) aims at retrieving a person of interest across multiple non-overlapping cameras. With the advancement of deep neural networks and increasing demand of intelligent video surveillance, it has gained significantly increased interest in the computer vision community. By dissecting the involved components in developing a person Re-ID system, we categorize it into the closed-world and open-world settings. The widely studied closed-world setting is usually applied under various research-oriented assumptions, and has achieved inspiring success using deep learning techniques on a number of datasets. We first conduct a comprehensive overview with in-depth analysis for closed-world person Re-ID from three different perspectives, including deep feature representation learning, deep metric learning and ranking optimization. With the performance saturation under closed-world setting, the research focus for person Re-ID has recently shifted to the open-world setting, facing more challenging issues. This setting is closer to practical applications under specific scenarios. We summarize the open-world Re-ID in terms of five different aspects. By analyzing the advantages of existing methods, we design a powerful AGW baseline, achieving state-of-the-art or at least comparable performance on twelve datasets for FOUR different Re-ID tasks. Meanwhile, we introduce a new evaluation metric (mINP) for person Re-ID, indicating the cost for finding all the correct matches, which provides an additional criteria to evaluate the Re-ID system for real applications. Finally, some important yet under-investigated open issues are discussed.
ness

Friday 03 September 2021

256) [2018] Deep View-Aware Metric Learning for Person Re-Identification
Deep View-Aware Metric Learning for Person Re-Identification
Pu ChenXinyi XuCheng Deng
Electronic proceedings of IJCAI 2018
ness
255) [2021] SLIDE: Single Image 3D Photography with Soft Layering and Depth-aware Inpainting
SLIDE: Single Image 3D Photography with Soft Layering and Depth-aware Inpainting
Varun JampaniHuiwen ChangKyle SargentAbhishek KarRichard TuckerMichael KraininDominik KaeserWilliam T. FreemanDavid SalesinBrian CurlessCe Liu
Single image 3D photography enables viewers to view a still image from novel viewpoints. Recent approaches combine monocular depth networks with inpainting networks to achieve compelling results. A drawback of these techniques is the use of hard depth layering, making them unable to model intricate appearance details such as thin hair-like structures. We present SLIDE, a modular and unified system for single image 3D photography that uses a simple yet effective soft layering strategy to better preserve appearance details in novel views. In addition, we propose a novel depth-aware training strategy for our inpainting module, better suited for the 3D photography task. The resulting SLIDE approach is modular, enabling the use of other components such as segmentation and matting for improved layering. At the same time, SLIDE uses an efficient layered depth formulation that only requires a single forward pass through the component networks to produce high quality 3D photos. Extensive experimental analysis on three view-synthesis datasets, in combination with user studies on in-the-wild image collections, demonstrate superior performance of our technique in comparison to existing strong baselines while being conceptually much simpler. Project page: https://varunjampani.github.io/slide
teng
254) [2021] NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor Multi-view Stereo
NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor Multi-view Stereo
Yi WeiShaohui LiuYongming RaoWang ZhaoJiwen LuJie Zhou
In this work, we present a new multi-view depth estimation method that utilizes both conventional SfM reconstruction and learning-based priors over the recently proposed neural radiance fields (NeRF). Unlike existing neural network based optimization method that relies on estimated correspondences, our method directly optimizes over implicit volumes, eliminating the challenging step of matching pixels in indoor scenes. The key to our approach is to utilize the learning-based priors to guide the optimization process of NeRF. Our system firstly adapts a monocular depth network over the target scene by finetuning on its sparse SfM reconstruction. Then, we show that the shape-radiance ambiguity of NeRF still exists in indoor environments and propose to address the issue by employing the adapted depth priors to monitor the sampling process of volume rendering. Finally, a per-pixel confidence map acquired by error computation on the rendered image can be used to further improve the depth quality. Experiments show that our proposed framework significantly outperforms state-of-the-art methods on indoor scenes, with surprising findings presented on the effectiveness of correspondence-based optimization and NeRF-based optimization over the adapted depth priors. In addition, we show that the guided optimization scheme does not sacrifice the original synthesis capability of neural radiance fields, improving the rendering quality on both seen and novel views. Code is available at https://github.com/weiyithu/NerfingMVS.
teng

Thursday 02 September 2021

253) [2021] Seeing Implicit Neural Representations as Fourier Series
Seeing Implicit Neural Representations as Fourier Series
Nuri BenbarkaTimon HöferHamd ul-moqeet RiazAndreas Zell
Implicit Neural Representations (INR) use multilayer perceptrons to represent high-frequency functions in low-dimensional problem domains. Recently these representations achieved state-of-the-art results on tasks related to complex 3D objects and scenes. A core problem is the representation of highly detailed signals, which is tackled using networks with periodic activation functions (SIRENs) or applying Fourier mappings to the input. This work analyzes the connection between the two methods and shows that a Fourier mapped perceptron is structurally like one hidden layer SIREN. Furthermore, we identify the relationship between the previously proposed Fourier mapping and the general d-dimensional Fourier series, leading to an integer lattice mapping. Moreover, we modify a progressive training strategy to work on arbitrary Fourier mappings and show that it improves the generalization of the interpolation task. Lastly, we compare the different mappings on the image regression and novel view synthesis tasks. We confirm the previous finding that the main contributor to the mapping performance is the size of the embedding and standard deviation of its elements.
teng

Wednesday 01 September 2021

252) [2020] GANSpace: Discovering Interpretable GAN Controls
GANSpace: Discovering Interpretable GAN Controls
Erik HärkönenAaron HertzmannJaakko LehtinenSylvain Paris
This paper describes a simple technique to analyze Generative Adversarial Networks (GANs) and create interpretable controls for image synthesis, such as change of viewpoint, aging, lighting, and time of day. We identify important latent directions based on Principal Components Analysis (PCA) applied either in latent space or feature space. Then, we show that a large number of interpretable controls can be defined by layer-wise perturbation along the principal directions. Moreover, we show that BigGAN can be controlled with layer-wise inputs in a StyleGAN-like manner. We show results on different GANs trained on various datasets, and demonstrate good qualitative matches to edit directions found through earlier supervised approaches.
ploy
251) [2021] SemIE: Semantically-aware Image Extrapolation
SemIE: Semantically-aware Image Extrapolation
Bholeshwar KhuranaSoumya Ranjan DashAbhishek BhatiaAniruddha MahapatraHrituraj SinghKuldeep Kulkarni
We propose a semantically-aware novel paradigm to perform image extrapolation that enables the addition of new object instances. All previous methods are limited in their capability of extrapolation to merely extending the already existing objects in the image. However, our proposed approach focuses not only on (i) extending the already present objects but also on (ii) adding new objects in the extended region based on the context. To this end, for a given image, we first obtain an object segmentation map using a state-of-the-art semantic segmentation method. The, thus, obtained segmentation map is fed into a network to compute the extrapolated semantic segmentation and the corresponding panoptic segmentation maps. The input image and the obtained segmentation maps are further utilized to generate the final extrapolated image. We conduct experiments on Cityscapes and ADE20K-bedroom datasets and show that our method outperforms all baselines in terms of FID, and similarity in object co-occurrence statistics.
teng

Tuesday 31 August 2021

250) [2021] Deep 3D Mask Volume for View Synthesis of Dynamic Scenes
Deep 3D Mask Volume for View Synthesis of Dynamic Scenes
Kai-En LinLei XiaoFeng LiuGuowei YangRavi Ramamoorthi
Image view synthesis has seen great success in reconstructing photorealistic visuals, thanks to deep learning and various novel representations. The next key step in immersive virtual experiences is view synthesis of dynamic scenes. However, several challenges exist due to the lack of high-quality training datasets, and the additional time dimension for videos of dynamic scenes. To address this issue, we introduce a multi-view video dataset, captured with a custom 10-camera rig in 120FPS. The dataset contains 96 high-quality scenes showing various visual effects and human interactions in outdoor scenes. We develop a new algorithm, Deep 3D Mask Volume, which enables temporally-stable view extrapolation from binocular videos of dynamic scenes, captured by static cameras. Our algorithm addresses the temporal inconsistency of disocclusions by identifying the error-prone areas with a 3D mask volume, and replaces them with static background observed throughout the video. Our method enables manipulation in 3D space as opposed to simple 2D masks, We demonstrate better temporal stability than frame-by-frame static view synthesis methods, or those that use 2D masks. The resulting view synthesis videos show minimal flickering artifacts and allow for larger translational movements.
teng

Monday 30 August 2021

249) [2021] Toward Spatially Unbiased Generative Models
Toward Spatially Unbiased Generative Models
Jooyoung ChoiJungbeom LeeYonghyun JeongSungroh Yoon
Recent image generation models show remarkable generation performance. However, they mirror strong location preference in datasets, which we call spatial bias. Therefore, generators render poor samples at unseen locations and scales. We argue that the generators rely on their implicit positional encoding to render spatial content. From our observations, the generator's implicit positional encoding is translation-variant, making the generator spatially biased. To address this issue, we propose injecting explicit positional encoding at each scale of the generator. By learning the spatially unbiased generator, we facilitate the robust use of generators in multiple tasks, such as GAN inversion, multi-scale generation, generation of arbitrary sizes and aspect ratios. Furthermore, we show that our method can also be applied to denoising diffusion probabilistic models.
star
aek

Saturday 28 August 2021

248) [2021] MINE: Towards Continuous Depth MPI with NeRF for Novel View Synthesis
MINE: Towards Continuous Depth MPI with NeRF for Novel View Synthesis
Jiaxin LiZijian FengQi SheHenghui DingChanghu WangGim Hee Lee
In this paper, we propose MINE to perform novel view synthesis and depth estimation via dense 3D reconstruction from a single image. Our approach is a continuous depth generalization of the Multiplane Images (MPI) by introducing the NEural radiance fields (NeRF). Given a single image as input, MINE predicts a 4-channel image (RGB and volume density) at arbitrary depth values to jointly reconstruct the camera frustum and fill in occluded contents. The reconstructed and inpainted frustum can then be easily rendered into novel RGB or depth views using differentiable rendering. Extensive experiments on RealEstate10K, KITTI and Flowers Light Fields show that our MINE outperforms state-of-the-art by a large margin in novel view synthesis. We also achieve competitive results in depth estimation on iBims-1 and NYU-v2 without annotated depth supervision. Our source code is available at https://github.com/vincentfung13/MINE
pure
teng
247) [2021] NeuralMVS: Bridging Multi-View Stereo and Novel View Synthesis
NeuralMVS: Bridging Multi-View Stereo and Novel View Synthesis
Radu Alexandru RosuSven Behnke
Multi-View Stereo (MVS) is a core task in 3D computer vision. With the surge of novel deep learning methods, learned MVS has surpassed the accuracy of classical approaches, but still relies on building a memory intensive dense cost volume. Novel View Synthesis (NVS) is a parallel line of research and has recently seen an increase in popularity with Neural Radiance Field (NeRF) models, which optimize a per scene radiance field. However, NeRF methods do not generalize to novel scenes and are slow to train and test. We propose to bridge the gap between these two methodologies with a novel network that can recover 3D scene geometry as a distance function, together with high-resolution color images. Our method uses only a sparse set of images as input and can generalize well to novel scenes. Additionally, we propose a coarse-to-fine sphere tracing approach in order to significantly increase speed. We show on various datasets that our method reaches comparable accuracy to per-scene optimized methods while being able to generalize and running significantly faster.
pure
teng

Wednesday 25 August 2021

246) [2021] Variational Diffusion Models
Variational Diffusion Models
Diederik P. KingmaTim SalimansBen PooleJonathan Ho
Diffusion-based generative models have demonstrated a capacity for perceptually impressive synthesis, but can they also be great likelihood-based models? We answer this in the affirmative, and introduce a family of diffusion-based generative models that obtain state-of-the-art likelihoods on standard image density estimation benchmarks. Unlike other diffusion-based models, our method allows for efficient optimization of the noise schedule jointly with the rest of the model. We show that the variational lower bound (VLB) simplifies to a remarkably short expression in terms of the signal-to-noise ratio of the diffused data, thereby improving our theoretical understanding of this model class. Using this insight, we prove an equivalence between several models proposed in the literature. In addition, we show that the continuous-time VLB is invariant to the noise schedule, except for the signal-to-noise ratio at its endpoints. This enables us to learn a noise schedule that minimizes the variance of the resulting VLB estimator, leading to faster optimization. Combining these advances with architectural improvements, we obtain state-of-the-art likelihoods on image density estimation benchmarks, outperforming autoregressive models that have dominated these benchmarks for many years, with often significantly faster optimization. In addition, we show how to turn the model into a bits-back compression scheme, and demonstrate lossless compression rates close to the theoretical optimum.
ta
245) [2021] Pri3D: Can 3D Priors Help 2D Representation Learning?
Pri3D: Can 3D Priors Help 2D Representation Learning?
Ji HouSaining XieBenjamin GrahamAngela DaiMatthias Nießner
Recent advances in 3D perception have shown impressive progress in understanding geometric structures of 3Dshapes and even scenes. Inspired by these advances in geometric understanding, we aim to imbue image-based perception with representations learned under geometric constraints. We introduce an approach to learn view-invariant,geometry-aware representations for network pre-training, based on multi-view RGB-D data, that can then be effectively transferred to downstream 2D tasks. We propose to employ contrastive learning under both multi-view im-age constraints and image-geometry constraints to encode3D priors into learned 2D representations. This results not only in improvement over 2D-only representation learning on the image-based tasks of semantic segmentation, instance segmentation, and object detection on real-world in-door datasets, but moreover, provides significant improvement in the low data regime. We show a significant improvement of 6.0% on semantic segmentation on full data as well as 11.9% on 20% data against baselines on ScanNet.
244) [2020] Few-Shot Classification with Feature Map Reconstruction Networks
Few-Shot Classification with Feature Map Reconstruction Networks
Davis WertheimerLuming TangBharath Hariharan
In this paper we reformulate few-shot classification as a reconstruction problem in latent space. The ability of the network to reconstruct a query feature map from support features of a given class predicts membership of the query in that class. We introduce a novel mechanism for few-shot classification by regressing directly from support features to query features in closed form, without introducing any new modules or large-scale learnable parameters. The resulting Feature Map Reconstruction Networks are both more performant and computationally efficient than previous approaches. We demonstrate consistent and substantial accuracy gains on four fine-grained benchmarks with varying neural architectures. Our model is also competitive on the non-fine-grained mini-ImageNet and tiered-ImageNet benchmarks with minimal bells and whistles.
som
243) [2021] Linear Semantics in Generative Adversarial Networks
Linear Semantics in Generative Adversarial Networks
Jianjin XuChangxi Zheng
Generative Adversarial Networks (GANs) are able to generate high-quality images, but it remains difficult to explicitly specify the semantics of synthesized images. In this work, we aim to better understand the semantic representation of GANs, and thereby enable semantic control in GAN's generation process. Interestingly, we find that a well-trained GAN encodes image semantics in its internal feature maps in a surprisingly simple way: a linear transformation of feature maps suffices to extract the generated image semantics. To verify this simplicity, we conduct extensive experiments on various GANs and datasets; and thanks to this simplicity, we are able to learn a semantic segmentation model for a trained GAN from a small number (e.g., 8) of labeled images. Last but not least, leveraging our findings, we propose two few-shot image editing approaches, namely Semantic-Conditional Sampling and Semantic Image Editing. Given a trained GAN and as few as eight semantic annotations, the user is able to generate diverse images subject to a user-provided semantic layout, and control the synthesized image semantics. We have made the code publicly available.
som
242) [2021] Contrasting Contrastive Self-Supervised Representation Learning Pipelines
Contrasting Contrastive Self-Supervised Representation Learning Pipelines
Klemen KotarGabriel IlharcoLudwig SchmidtKiana EhsaniRoozbeh Mottaghi
In the past few years, we have witnessed remarkable breakthroughs in self-supervised representation learning. Despite the success and adoption of representations learned through this paradigm, much is yet to be understood about how different training methods and datasets influence performance on downstream tasks. In this paper, we analyze contrastive approaches as one of the most successful and popular variants of self-supervised representation learning. We perform this analysis from the perspective of the training algorithms, pre-training datasets and end tasks. We examine over 700 training experiments including 30 encoders, 4 pre-training datasets and 20 diverse downstream tasks. Our experiments address various questions regarding the performance of self-supervised models compared to their supervised counterparts, current benchmarks used for evaluation, and the effect of the pre-training data on end task performance. Our Visual Representation Benchmark (ViRB) is available at: https://github.com/allenai/virb.
som
241) [2019] Natural Adversarial Examples
Natural Adversarial Examples
Dan HendrycksKevin ZhaoSteven BasartJacob SteinhardtDawn Song
We introduce two challenging datasets that reliably cause machine learning model performance to substantially degrade. The datasets are collected with a simple adversarial filtration technique to create datasets with limited spurious cues. Our datasets' real-world, unmodified examples transfer to various unseen models reliably, demonstrating that computer vision models have shared weaknesses. The first dataset is called ImageNet-A and is like the ImageNet test set, but it is far more challenging for existing models. We also curate an adversarial out-of-distribution detection dataset called ImageNet-O, which is the first out-of-distribution detection dataset created for ImageNet models. On ImageNet-A a DenseNet-121 obtains around 2% accuracy, an accuracy drop of approximately 90%, and its out-of-distribution detection performance on ImageNet-O is near random chance levels. We find that existing data augmentation techniques hardly boost performance, and using other public training datasets provides improvements that are limited. However, we find that improvements to computer vision architectures provide a promising path towards robust models.
som

Monday 23 August 2021

240) [2020] PyTorch Distributed: Experiences on Accelerating Data Parallel Training
PyTorch Distributed: Experiences on Accelerating Data Parallel Training
Shen LiYanli ZhaoRohan VarmaOmkar SalpekarPieter NoordhuisTeng LiAdam PaszkeJeff SmithBrian VaughanPritam DamaniaSoumith Chintala
This paper presents the design, implementation, and evaluation of the PyTorch distributed data parallel module. PyTorch is a widely-adopted scientific computing package used in deep learning research and applications. Recent advances in deep learning argue for the value of large datasets and large models, which necessitates the ability to scale out model training to more computational resources. Data parallelism has emerged as a popular solution for distributed training thanks to its straightforward principle and broad applicability. In general, the technique of distributed data parallelism replicates the model on every computational resource to generate gradients independently and then communicates those gradients at each iteration to keep model replicas consistent. Despite the conceptual simplicity of the technique, the subtle dependencies between computation and communication make it non-trivial to optimize the distributed training efficiency. As of v1.5, PyTorch natively provides several techniques to accelerate distributed data parallel, including bucketing gradients, overlapping computation with communication, and skipping gradient synchronization. Evaluations show that, when configured appropriately, the PyTorch distributed data parallel module attains near-linear scalability using 256 GPUs.
ta
239) [2018] Feature-wise transformations
Feature-wise transformations
Vincent DumoulinEthan PerezNathan SchucherFlorian StrubHarm de VriesAaron CourvilleYoshua Bengio
A simple and surprisingly effective family of conditioning mechanisms.
star
aek
238) [2017] FiLM: Visual Reasoning with a General Conditioning Layer
FiLM: Visual Reasoning with a General Conditioning Layer
Ethan PerezFlorian StrubHarm de VriesVincent DumoulinAaron Courville
We introduce a general-purpose conditioning method for neural networks called FiLM: Feature-wise Linear Modulation. FiLM layers influence neural network computation via a simple, feature-wise affine transformation based on conditioning information. We show that FiLM layers are highly effective for visual reasoning - answering image-related questions which require a multi-step, high-level process - a task which has proven difficult for standard deep learning methods that do not explicitly model reasoning. Specifically, we show on visual reasoning tasks that FiLM layers 1) halve state-of-the-art error for the CLEVR benchmark, 2) modulate features in a coherent manner, 3) are robust to ablations and architectural modifications, and 4) generalize well to challenging, new data from few examples or even zero-shot.
aek
ta
237) [2020] WaveGrad: Estimating Gradients for Waveform Generation
WaveGrad: Estimating Gradients for Waveform Generation
Nanxin ChenYu ZhangHeiga ZenRon J. WeissMohammad NorouziWilliam Chan
This paper introduces WaveGrad, a conditional model for waveform generation which estimates gradients of the data density. The model is built on prior work on score matching and diffusion probabilistic models. It starts from a Gaussian white noise signal and iteratively refines the signal via a gradient-based sampler conditioned on the mel-spectrogram. WaveGrad offers a natural way to trade inference speed for sample quality by adjusting the number of refinement steps, and bridges the gap between non-autoregressive and autoregressive models in terms of audio quality. We find that it can generate high fidelity audio samples using as few as six iterations. Experiments reveal WaveGrad to generate high fidelity audio, outperforming adversarial non-autoregressive baselines and matching a strong likelihood-based autoregressive baseline using fewer sequential operations. Audio samples are available at https://wavegrad.github.io/.
aek
236) [2021] WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis
WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis
Nanxin ChenYu ZhangHeiga ZenRon J. WeissMohammad NorouziNajim DehakWilliam Chan
This paper introduces WaveGrad 2, a non-autoregressive generative model for text-to-speech synthesis. WaveGrad 2 is trained to estimate the gradient of the log conditional density of the waveform given a phoneme sequence. The model takes an input phoneme sequence, and through an iterative refinement process, generates an audio waveform. This contrasts to the original WaveGrad vocoder which conditions on mel-spectrogram features, generated by a separate model. The iterative refinement process starts from Gaussian noise, and through a series of refinement steps (e.g., 50 steps), progressively recovers the audio sequence. WaveGrad 2 offers a natural way to trade-off between inference speed and sample quality, through adjusting the number of refinement steps. Experiments show that the model can generate high fidelity audio, approaching the performance of a state-of-the-art neural TTS system. We also report various ablation studies over different model configurations. Audio samples are available at https://wavegrad.github.io/v2.
aek

Saturday 21 August 2021

235) [2021] Cascaded Diffusion Models for High Fidelity Image Generation
Cascaded Diffusion Models for High Fidelity Image Generation
Jonathan HoChitwan SahariaWilliam ChanDavid J FleetMohammad NorouziTim Salimans
We show that cascaded diffusion models are capable of generating high fidelity images on the class-conditional ImageNet generation challenge, without any assistance from auxiliary image classifiers to boost sample quality. A cascaded diffusion model comprises a pipeline of multiple diffusion models that generate images of increasing resolution, beginning with a standard diffusion model at the lowest resolution, followed by one or more super-resolution diffusion models that successively upsample the image and add higher resolution details. We find that the sample quality of a cascading pipeline relies crucially on conditioning augmentation, our proposed method of data augmentation of the lower resolution conditioning inputs to the super-resolution models. Our experiments show that conditioning augmentation prevents compounding error during sampling in a cascaded model, helping us to train cascading pipelines achieving FID scores of 1.48 at 64×64, 3.52 at 128×128 and 4.88 at 256×256 resolutions, outperforming BigGAN-deep, and classification accuracy scores of 63.02% (top-1) and 84.06% (top-5) at 256×256, outperforming VQ-VAE-2.
aek
ta
234) Full Text PDF
Full Text PDF
233) [2021] Image2Lego: Customized LEGO Set Generation from Images
Image2Lego: Customized LEGO Set Generation from Images
Kyle LennonKatharina FransenAlexander O'BrienYumeng CaoMatthew BeveridgeYamin ArefeenNikhil SinghIddo Drori
Although LEGO sets have entertained generations of children and adults, the challenge of designing customized builds matching the complexity of real-world or imagined scenes remains too great for the average enthusiast. In order to make this feat possible, we implement a system that generates a LEGO brick model from 2D images. We design a novel solution to this problem that uses an octree-structured autoencoder trained on 3D voxelized models to obtain a feasible latent representation for model reconstruction, and a separate network trained to predict this latent representation from 2D images. LEGO models are obtained by algorithmic conversion of the 3D voxelized model to bricks. We demonstrate first-of-its-kind conversion of photographs to 3D LEGO models. An octree architecture enables the flexibility to produce multiple resolutions to best fit a user's creative vision or design needs. In order to demonstrate the broad applicability of our system, we generate step-by-step building instructions and animations for LEGO models of objects and human faces. Finally, we test these automatically generated LEGO sets by constructing physical builds using real LEGO bricks.
pure
232) [2021] Neural Rays for Occlusion-aware Image-based Rendering
Neural Rays for Occlusion-aware Image-based Rendering
Yuan LiuSida PengLingjie LiuQianqian WangPeng WangChristian TheobaltXiaowei ZhouWenping Wang
We present a new neural representation, called Neural Ray (NeuRay), for the novel view synthesis (NVS) task with multi-view images as input. Existing neural scene representations for solving the NVS problem, such as NeRF, cannot generalize to new scenes and take an excessively long time on training on each new scene from scratch. The other subsequent neural rendering methods based on stereo matching, such as PixelNeRF, SRF and IBRNet are designed to generalize to unseen scenes but suffer from view inconsistency in complex scenes with self-occlusions. To address these issues, our NeuRay method represents every scene by encoding the visibility of rays associated with the input views. This neural representation can efficiently be initialized from depths estimated by external MVS methods, which is able to generalize to new scenes and achieves satisfactory rendering images without any training on the scene. Then, the initialized NeuRay can be further optimized on every scene with little training timing to enforce spatial coherence to ensure view consistency in the presence of severe self-occlusion. Experiments demonstrate that NeuRay can quickly generate high-quality novel view images of unseen scenes with little finetuning and can handle complex scenes with severe self-occlusions which previous methods struggle with.
pure
seminar

Thursday 19 August 2021

231) [2021] Improved StyleGAN Embedding: Where are the Good Latents?
Improved StyleGAN Embedding: Where are the Good Latents?
Peihao ZhuRameen AbdalYipeng QinJohn FemianiPeter Wonka
StyleGAN is able to produce photorealistic images that are almost indistinguishable from real ones. The reverse problem of finding an embedding for a given image poses a challenge. Embeddings that reconstruct an image well are not always robust to editing operations. In this paper, we address the problem of finding an embedding that both reconstructs images and also supports image editing tasks. First, we introduce a new normalized space to analyze the diversity and the quality of the reconstructed latent codes. This space can help answer the question of where good latent codes are located in latent space. Second, we propose an improved embedding algorithm using a novel regularization method based on our analysis. Finally, we analyze the quality of different embedding algorithms. We compare our results with the current state-of-the-art methods and achieve a better trade-off between reconstruction quality and editing quality.
ploy

Wednesday 18 August 2021

230) [2021] FiG-NeRF: Figure-Ground Neural Radiance Fields for 3D Object Category Modelling
FiG-NeRF: Figure-Ground Neural Radiance Fields for 3D Object Category Modelling
Christopher XieKeunhong ParkRicardo Martin-BruallaMatthew Brown
We investigate the use of Neural Radiance Fields (NeRF) to learn high quality 3D object category models from collections of input images. In contrast to previous work, we are able to do this whilst simultaneously separating foreground objects from their varying backgrounds. We achieve this via a 2-component NeRF model, FiG-NeRF, that prefers explanation of the scene as a geometrically constant background and a deformable foreground that represents the object category. We show that this method can learn accurate 3D object category models using only photometric supervision and casually captured images of the objects. Additionally, our 2-part decomposition allows the model to perform accurate and crisp amodal segmentation. We quantitatively evaluate our method with view synthesis and image fidelity metrics, using synthetic, lab-captured, and in-the-wild data. Our results demonstrate convincing 3D object category modelling that exceed the performance of existing methods.
aek
ta

Saturday 14 August 2021

229) [2021] UnrealPerson: An Adaptive Pipeline Towards Costless Person Re-Identification
UnrealPerson: An Adaptive Pipeline Towards Costless Person Re-Identification
Tianyu ZhangLingxi XieLonghui WeiZijie ZhuangYongfei ZhangBo LiQi Tian
ness
228) [2017] Person Transfer GAN to Bridge Domain Gap for Person Re-Identification
Person Transfer GAN to Bridge Domain Gap for Person Re-Identification
Longhui WeiShiliang ZhangWen GaoQi Tian
Although the performance of person Re-Identification (ReID) has been significantly boosted, many challenging issues in real scenarios have not been fully investigated, e.g., the complex scenes and lighting variations, viewpoint and pose changes, and the large number of identities in a camera network. To facilitate the research towards conquering those issues, this paper contributes a new dataset called MSMT17 with many important features, e.g., 1) the raw videos are taken by an 15-camera network deployed in both indoor and outdoor scenes, 2) the videos cover a long period of time and present complex lighting variations, and 3) it contains currently the largest number of annotated identities, i.e., 4,101 identities and 126,441 bounding boxes. We also observe that, domain gap commonly exists between datasets, which essentially causes severe performance drop when training and testing on different datasets. This results in that available training data cannot be effectively leveraged for new testing domains. To relieve the expensive costs of annotating new training samples, we propose a Person Transfer Generative Adversarial Network (PTGAN) to bridge the domain gap. Comprehensive experiments show that the domain gap could be substantially narrowed-down by the PTGAN.
ness
227) [2021] On the Unreasonable Effectiveness of Centroids in Image Retrieval
On the Unreasonable Effectiveness of Centroids in Image Retrieval
Mikolaj WieczorekBarbara RychalskaJacek Dabrowski
Image retrieval task consists of finding similar images to a query image from a set of gallery (database) images. Such systems are used in various applications e.g. person re-identification (ReID) or visual product search. Despite active development of retrieval models it still remains a challenging task mainly due to large intra-class variance caused by changes in view angle, lighting, background clutter or occlusion, while inter-class variance may be relatively low. A large portion of current research focuses on creating more robust features and modifying objective functions, usually based on Triplet Loss. Some works experiment with using centroid/proxy representation of a class to alleviate problems with computing speed and hard samples mining used with Triplet Loss. However, these approaches are used for training alone and discarded during the retrieval stage. In this paper we propose to use the mean centroid representation both during training and retrieval. Such an aggregated representation is more robust to outliers and assures more stable features. As each class is represented by a single embedding - the class centroid - both retrieval time and storage requirements are reduced significantly. Aggregating multiple embeddings results in a significant reduction of the search space due to lowering the number of candidate target vectors, which makes the method especially suitable for production deployments. Comprehensive experiments conducted on two ReID and Fashion Retrieval datasets demonstrate effectiveness of our method, which outperforms the current state-of-the-art. We propose centroid training and retrieval as a viable method for both Fashion Retrieval and ReID applications.
ness
226) [2017] Re-ranking Person Re-identification with k-reciprocal Encoding
Re-ranking Person Re-identification with k-reciprocal Encoding
Zhun ZhongLiang ZhengDonglin CaoShaozi Li
When considering person re-identification (re-ID) as a retrieval process, re-ranking is a critical step to improve its accuracy. Yet in the re-ID community, limited effort has been devoted to re-ranking, especially those fully automatic, unsupervised solutions. In this paper, we propose a k-reciprocal encoding method to re-rank the re-ID results. Our hypothesis is that if a gallery image is similar to the probe in the k-reciprocal nearest neighbors, it is more likely to be a true match. Specifically, given an image, a k-reciprocal feature is calculated by encoding its k-reciprocal nearest neighbors into a single vector, which is used for re-ranking under the Jaccard distance. The final distance is computed as the combination of the original distance and the Jaccard distance. Our re-ranking method does not require any human interaction or any labeled data, so it is applicable to large-scale datasets. Experiments on the large-scale Market-1501, CUHK03, MARS, and PRW datasets confirm the effectiveness of our method.
ness
225) [2021] Fine-Grained Shape-Appearance Mutual Learning for Cloth-Changing Person Re-Identification
Fine-Grained Shape-Appearance Mutual Learning for Cloth-Changing Person Re-Identification
Peixian HongTao WuAncong WuXintong HanWei-Shi Zheng
ness
224) [2021] Person30K: A Dual-Meta Generalization Network for Person Re-Identification
Person30K: A Dual-Meta Generalization Network for Person Re-Identification
Yan BaiJile JiaoWang CeJun LiuYihang LouXuetao FengLing-Yu Duan
ness

Friday 13 August 2021

223) [2021] PixelSynth: Generating a 3D-Consistent Experience from a Single Image
PixelSynth: Generating a 3D-Consistent Experience from a Single Image
Chris RockwellDavid F. FouheyJustin Johnson
Recent advancements in differentiable rendering and 3D reasoning have driven exciting results in novel view synthesis from a single image. Despite realistic results, methods are limited to relatively small view change. In order to synthesize immersive scenes, models must also be able to extrapolate. We present an approach that fuses 3D reasoning with autoregressive modeling to outpaint large view changes in a 3D-consistent manner, enabling scene synthesis. We demonstrate considerable improvement in single image large-angle view synthesis results compared to a variety of methods and possible variants across simulated and real datasets. In addition, we show increased 3D consistency compared to alternative accumulation methods. Project website: https://crockwell.github.io/pixelsynth/
teng
222) [2021] SIMONe: View-Invariant, Temporally-Abstracted Object Representations via Unsupervised Video Decomposition
SIMONe: View-Invariant, Temporally-Abstracted Object Representations via Unsupervised Video Decomposition
Rishabh KabraDaniel ZoranGoker ErdoganLoic MattheyAntonia CreswellMatthew BotvinickAlexander LerchnerChristopher P. Burgess
To help agents reason about scenes in terms of their building blocks, we wish to extract the compositional structure of any given scene (in particular, the configuration and characteristics of objects comprising the scene). This problem is especially difficult when scene structure needs to be inferred while also estimating the agent's location/viewpoint, as the two variables jointly give rise to the agent's observations. We present an unsupervised variational approach to this problem. Leveraging the shared structure that exists across different scenes, our model learns to infer two sets of latent representations from RGB video input alone: a set of "object" latents, corresponding to the time-invariant, object-level contents of the scene, as well as a set of "frame" latents, corresponding to global time-varying elements such as viewpoint. This factorization of latents allows our model, SIMONe, to represent object attributes in an allocentric manner which does not depend on viewpoint. Moreover, it allows us to disentangle object dynamics and summarize their trajectories as time-abstracted, view-invariant, per-object properties. We demonstrate these capabilities, as well as the model's performance in terms of view synthesis and instance segmentation, across three procedurally generated video datasets.
ta
221) [2021] SofGAN: A Portrait Image Generator with Dynamic Styling
SofGAN: A Portrait Image Generator with Dynamic Styling
Anpei ChenRuiyang LiuLing XieZhang ChenHao SuJingyi Yu
Recently, Generative Adversarial Networks (GANs)} have been widely used for portrait image generation. However, in the latent space learned by GANs, different attributes, such as pose, shape, and texture style, are generally entangled, making the explicit control of specific attributes difficult. To address this issue, we propose a SofGAN image generator to decouple the latent space of portraits into two subspaces: a geometry space and a texture space. The latent codes sampled from the two subspaces are fed to two network branches separately, one to generate the 3D geometry of portraits with canonical pose, and the other to generate textures. The aligned 3D geometries also come with semantic part segmentation, encoded as a semantic occupancy field (SOF). The SOF allows the rendering of consistent 2D semantic segmentation maps at arbitrary views, which are then fused with the generated texture maps and stylized to a portrait photo using our semantic instance-wise (SIW) module. Through extensive experiments, we show that our system can generate high quality portrait images with independently controllable geometry and texture attributes. The method also generalizes well in various applications such as appearance-consistent facial animation and dynamic styling.
teng

Thursday 12 August 2021

220) [2021] Differentiable Surface Rendering via Non-Differentiable Sampling
Differentiable Surface Rendering via Non-Differentiable Sampling
Forrester ColeKyle GenovaAvneesh SudDaniel VlasicZhoutong Zhang
We present a method for differentiable rendering of 3D surfaces that supports both explicit and implicit representations, provides derivatives at occlusion boundaries, and is fast and simple to implement. The method first samples the surface using non-differentiable rasterization, then applies differentiable, depth-aware point splatting to produce the final image. Our approach requires no differentiable meshing or rasterization steps, making it efficient for large 3D models and applicable to isosurfaces extracted from implicit surface definitions. We demonstrate the effectiveness of our method for implicit-, mesh-, and parametric-surface-based inverse rendering and neural-network training applications. In particular, we show for the first time efficient, differentiable rendering of an isosurface extracted from a neural radiance field (NeRF), and demonstrate surface-based, rather than volume-based, rendering of a NeRF.
teng
219) [2021] FLAME-in-NeRF : Neural control of Radiance Fields for Free View Face Animation
FLAME-in-NeRF : Neural control of Radiance Fields for Free View Face Animation
ShahRukh AtharZhixin ShuDimitris Samaras
This paper presents a neural rendering method for controllable portrait video synthesis. Recent advances in volumetric neural rendering, such as neural radiance fields (NeRF), has enabled the photorealistic novel view synthesis of static scenes with impressive results. However, modeling dynamic and controllable objects as part of a scene with such scene representations is still challenging. In this work, we design a system that enables both novel view synthesis for portrait video, including the human subject and the scene background, and explicit control of the facial expressions through a low-dimensional expression representation. We leverage the expression space of a 3D morphable face model (3DMM) to represent the distribution of human facial expressions, and use it to condition the NeRF volumetric function. Furthermore, we impose a spatial prior brought by 3DMM fitting to guide the network to learn disentangled control for scene appearance and facial actions. We demonstrate the effectiveness of our method on free view synthesis of portrait videos with expression controls. To train a scene, our method only requires a short video of a subject captured by a mobile device.
teng
218) [2021] NeRF-VAE: A Geometry Aware 3D Scene Generative Model
NeRF-VAE: A Geometry Aware 3D Scene Generative Model
Adam R. KosiorekHeiko StrathmannDaniel ZoranPol MorenoRosalia SchneiderSoňa MokráDanilo J. Rezende
We propose NeRF-VAE, a 3D scene generative model that incorporates geometric structure via NeRF and differentiable volume rendering. In contrast to NeRF, our model takes into account shared structure across scenes, and is able to infer the structure of a novel scene -- without the need to re-train -- using amortized inference. NeRF-VAE's explicit 3D rendering process further contrasts previous generative models with convolution-based rendering which lacks geometric structure. Our model is a VAE that learns a distribution over radiance fields by conditioning them on a latent scene representation. We show that, once trained, NeRF-VAE is able to infer and render geometrically-consistent scenes from previously unseen 3D environments using very few input images. We further demonstrate that NeRF-VAE generalizes well to out-of-distribution cameras, while convolutional models do not. Finally, we introduce and study an attention-based conditioning mechanism of NeRF-VAE's decoder, which improves model performance.
ta
217) [2021] LatentKeypointGAN: Controlling GANs via Latent Keypoints
LatentKeypointGAN: Controlling GANs via Latent Keypoints
Xingzhe HeBastian WandtHelge Rhodin
Generative adversarial networks (GANs) have attained photo-realistic quality. However, it remains an open challenge of how to best control the image content. We introduce LatentKeypointGAN, a two-stage GAN that is trained end-to-end on the classical GAN objective yet internally conditioned on a set of sparse keypoints with associated appearance embeddings that respectively control the position and style of the generated objects and their parts. A major difficulty that we address with suitable network architectures and training schemes is disentangling the image into spatial and appearance factors without any supervision signals of either nor domain knowledge. We demonstrate that LatentKeypointGAN provides an interpretable latent space that can be used to re-arrange the generated images by re-positioning and exchanging keypoint embeddings, such as combining the eyes, nose, and mouth from different images for generating portraits. In addition, the explicit generation of keypoints and matching images enables a new, GAN-based methodology for unsupervised keypoint detection.
moke
216) [2021] XVFI: eXtreme Video Frame Interpolation
XVFI: eXtreme Video Frame Interpolation
Hyeonjun SimJihyong OhMunchurl Kim
In this paper, we firstly present a dataset (X4K1000FPS) of 4K videos of 1000 fps with the extreme motion to the research community for video frame interpolation (VFI), and propose an extreme VFI network, called XVFI-Net, that first handles the VFI for 4K videos with large motion. The XVFI-Net is based on a recursive multi-scale shared structure that consists of two cascaded modules for bidirectional optical flow learning between two input frames (BiOF-I) and for bidirectional optical flow learning from target to input frames (BiOF-T). The optical flows are stably approximated by a complementary flow reversal (CFR) proposed in BiOF-T module. During inference, the BiOF-I module can start at any scale of input while the BiOF-T module only operates at the original input scale so that the inference can be accelerated while maintaining highly accurate VFI performance. Extensive experimental results show that our XVFI-Net can successfully capture the essential information of objects with extremely large motions and complex textures while the state-of-the-art methods exhibit poor performance. Furthermore, our XVFI-Net framework also performs comparably on the previous lower resolution benchmark dataset, which shows a robustness of our algorithm as well. All source codes, pre-trained models, and proposed X4K1000FPS datasets are publicly available at https://github.com/JihyongOh/XVFI.
som
215) [2021] DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort
DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort
Yuxuan ZhangHuan LingJun GaoKangxue YinJean-Francois LaflecheAdela BarriusoAntonio TorralbaSanja Fidler
We introduce DatasetGAN: an automatic procedure to generate massive datasets of high-quality semantically segmented images requiring minimal human effort. Current deep networks are extremely data-hungry, benefiting from training on large-scale datasets, which are time consuming to annotate. Our method relies on the power of recent GANs to generate realistic images. We show how the GAN latent code can be decoded to produce a semantic segmentation of the image. Training the decoder only needs a few labeled examples to generalize to the rest of the latent space, resulting in an infinite annotated dataset generator! These generated datasets can then be used for training any computer vision architecture just as real datasets are. As only a few images need to be manually segmented, it becomes possible to annotate images in extreme detail and generate datasets with rich object and part segmentations. To showcase the power of our approach, we generated datasets for 7 image segmentation tasks which include pixel-level labels for 34 human face parts, and 32 car parts. Our approach outperforms all semi-supervised baselines significantly and is on par with fully supervised methods, which in some cases require as much as 100x more annotated data as our method.
moke
som
214) [2021] Semantic Segmentation with Generative Models: Semi-Supervised Learning and Strong Out-of-Domain Generalization
Semantic Segmentation with Generative Models: Semi-Supervised Learning and Strong Out-of-Domain Generalization
Daiqing LiJunlin YangKarsten KreisAntonio TorralbaSanja Fidler
Training deep networks with limited labeled data while achieving a strong generalization ability is key in the quest to reduce human annotation efforts. This is the goal of semi-supervised learning, which exploits more widely available unlabeled data to complement small labeled data sets. In this paper, we propose a novel framework for discriminative pixel-level tasks using a generative model of both images and labels. Concretely, we learn a generative adversarial network that captures the joint image-label distribution and is trained efficiently using a large set of unlabeled images supplemented with only few labeled ones. We build our architecture on top of StyleGAN2, augmented with a label synthesis branch. Image labeling at test time is achieved by first embedding the target image into the joint latent space via an encoder network and test-time optimization, and then generating the label from the inferred embedding. We evaluate our approach in two important domains: medical image segmentation and part-based face segmentation. We demonstrate strong in-domain performance compared to several baselines, and are the first to showcase extreme out-of-domain generalization, such as transferring from CT to MRI in medical imaging, and photographs of real faces to paintings, sculptures, and even cartoons and animal faces. Project Page: \url{https://nv-tlabs.github.io/semanticGAN/}
som
213) [2021] Paint Transformer: Feed Forward Neural Painting with Stroke Prediction
Paint Transformer: Feed Forward Neural Painting with Stroke Prediction
Songhua LiuTianwei LinDongliang HeFu LiRuifeng DengXin LiErrui DingHao Wang
Neural painting refers to the procedure of producing a series of strokes for a given image and non-photo-realistically recreating it using neural networks. While reinforcement learning (RL) based agents can generate a stroke sequence step by step for this task, it is not easy to train a stable RL agent. On the other hand, stroke optimization methods search for a set of stroke parameters iteratively in a large search space; such low efficiency significantly limits their prevalence and practicality. Different from previous methods, in this paper, we formulate the task as a set prediction problem and propose a novel Transformer-based framework, dubbed Paint Transformer, to predict the parameters of a stroke set with a feed forward network. This way, our model can generate a set of strokes in parallel and obtain the final painting of size 512 * 512 in near real time. More importantly, since there is no dataset available for training the Paint Transformer, we devise a self-training pipeline such that it can be trained without any off-the-shelf dataset while still achieving excellent generalization capability. Experiments demonstrate that our method achieves better painting performance than previous ones with cheaper training and inference costs. Codes and models are available.
teng
212) [2020] Stylized Neural Painting
Stylized Neural Painting
Zhengxia ZouTianyang ShiShuang QiuYi YuanZhenwei Shi
This paper proposes an image-to-painting translation method that generates vivid and realistic painting artworks with controllable styles. Different from previous image-to-image translation methods that formulate the translation as pixel-wise prediction, we deal with such an artistic creation process in a vectorized environment and produce a sequence of physically meaningful stroke parameters that can be further used for rendering. Since a typical vector render is not differentiable, we design a novel neural renderer which imitates the behavior of the vector renderer and then frame the stroke prediction as a parameter searching process that maximizes the similarity between the input and the rendering output. We explored the zero-gradient problem on parameter searching and propose to solve this problem from an optimal transportation perspective. We also show that previous neural renderers have a parameter coupling problem and we re-design the rendering network with a rasterization network and a shading network that better handles the disentanglement of shape and color. Experiments show that the paintings generated by our method have a high degree of fidelity in both global appearance and local textures. Our method can be also jointly optimized with neural style transfer that further transfers visual style from other images. Our code and animated results are available at \url{https://jiupinjia.github.io/neuralpainter/}.
som
211) [2021] 3D Human Reconstruction in the Wild with Collaborative Aerial Cameras
3D Human Reconstruction in the Wild with Collaborative Aerial Cameras
Cherie HoAndrew JongHarry FreemanRohan RaoRogerio BonattiSebastian Scherer
Aerial vehicles are revolutionizing applications that require capturing the 3D structure of dynamic targets in the wild, such as sports, medicine, and entertainment. The core challenges in developing a motion-capture system that operates in outdoors environments are: (1) 3D inference requires multiple simultaneous viewpoints of the target, (2) occlusion caused by obstacles is frequent when tracking moving targets, and (3) the camera and vehicle state estimation is noisy. We present a real-time aerial system for multi-camera control that can reconstruct human motions in natural environments without the use of special-purpose markers. We develop a multi-robot coordination scheme that maintains the optimal flight formation for target reconstruction quality amongst obstacles. We provide studies evaluating system performance in simulation, and validate real-world performance using two drones while a target performs activities such as jogging and playing soccer. Supplementary video: https://youtu.be/jxt91vx0cns
som
210) [2021] FairyTailor: A Multimodal Generative Framework for Storytelling
FairyTailor: A Multimodal Generative Framework for Storytelling
Eden BensaidMauro MartinoBenjamin HooverJacob AndreasHendrik Strobelt
Storytelling is an open-ended task that entails creative thinking and requires a constant flow of ideas. Natural language generation (NLG) for storytelling is especially challenging because it requires the generated text to follow an overall theme while remaining creative and diverse to engage the reader. In this work, we introduce a system and a web-based demo, FairyTailor, for human-in-the-loop visual story co-creation. Users can create a cohesive children's fairytale by weaving generated texts and retrieved images with their input. FairyTailor adds another modality and modifies the text generation process to produce a coherent and creative sequence of text and images. To our knowledge, this is the first dynamic tool for multimodal story generation that allows interactive co-formation of both texts and images. It allows users to give feedback on co-created stories and share their results.
som
209) [2021] Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP
Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP
Daniil PakhomovSanchit HiraNarayani WagleKemar E. GreenNassir Navab
We introduce a method that allows to automatically segment images into semantically meaningful regions without human supervision. Derived regions are consistent across different images and coincide with human-defined semantic classes on some datasets. In cases where semantic regions might be hard for human to define and consistently label, our method is still able to find meaningful and consistent semantic classes. In our work, we use pretrained StyleGAN2~\cite{karras2020analyzing} generative model: clustering in the feature space of the generative model allows to discover semantic classes. Once classes are discovered, a synthetic dataset with generated images and corresponding segmentation masks can be created. After that a segmentation model is trained on the synthetic dataset and is able to generalize to real images. Additionally, by using CLIP~\cite{radford2021learning} we are able to use prompts defined in a natural language to discover some desired semantic classes. We test our method on publicly available datasets and show state-of-the-art results.
som
208) [2021] Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval
Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval
Min Jin ChongWen-Sheng ChuAbhishek KumarDavid Forsyth
We present Retrieve in Style (RIS), an unsupervised framework for fine-grained facial feature transfer and retrieval on real images. Recent work shows that it is possible to learn a catalog that allows local semantic transfers of facial features on generated images by capitalizing on the disentanglement property of the StyleGAN latent space. RIS improves existing art on: 1) feature disentanglement and allows for challenging transfers (i.e., hair and pose) that were not shown possible in SoTA methods. 2) eliminating the need for per-image hyperparameter tuning, and for computing a catalog over a large batch of images. 3) enabling face retrieval using the proposed facial features (e.g., eyes), and to our best knowledge, is the first work to retrieve face images at the fine-grained level. 4) robustness and natural application to real images. Our qualitative and quantitative analyses show RIS achieves both high-fidelity feature transfers and accurate fine-grained retrievals on real images. We discuss the responsible application of RIS.
ploy
207) [2021] Unconstrained Scene Generation with Locally Conditioned Radiance Fields
Unconstrained Scene Generation with Locally Conditioned Radiance Fields
Terrance DeVriesMiguel Angel BautistaNitish SrivastavaGraham W. TaylorJoshua M. Susskind
We tackle the challenge of learning a distribution over complex, realistic, indoor scenes. In this paper, we introduce Generative Scene Networks (GSN), which learns to decompose scenes into a collection of many local radiance fields that can be rendered from a free moving camera. Our model can be used as a prior to generate new scenes, or to complete a scene given only sparse 2D observations. Recent work has shown that generative models of radiance fields can capture properties such as multi-view consistency and view-dependent lighting. However, these models are specialized for constrained viewing of single objects, such as cars or faces. Due to the size and complexity of realistic indoor environments, existing models lack the representational capacity to adequately capture them. Our decomposition scheme scales to larger and more complex scenes while preserving details and diversity, and the learned prior enables high-quality rendering from viewpoints that are significantly different from observed viewpoints. When compared to existing models, GSN produces quantitatively higher-quality scene renderings across several different scene datasets.
star
aek
ta
206) [2021] ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models
ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models
Jooyoung ChoiSungwon KimYonghyun JeongYoungjune GwonSungroh Yoon
Denoising diffusion probabilistic models (DDPM) have shown remarkable performance in unconditional image generation. However, due to the stochasticity of the generative process in DDPM, it is challenging to generate images with the desired semantics. In this work, we propose Iterative Latent Variable Refinement (ILVR), a method to guide the generative process in DDPM to generate high-quality images based on a given reference image. Here, the refinement of the generative process in DDPM enables a single DDPM to sample images from various sets directed by the reference image. The proposed ILVR method generates high-quality images while controlling the generation. The controllability of our method allows adaptation of a single DDPM without any additional learning in various image generation tasks, such as generation from various downsampling factors, multi-domain image translation, paint-to-image, and editing with scribbles.
aek
ta
teng

Wednesday 11 August 2021

205) [2019] Neural Volumes: Learning Dynamic Renderable Volumes from Images
Neural Volumes: Learning Dynamic Renderable Volumes from Images
Stephen LombardiTomas SimonJason SaragihGabriel SchwartzAndreas LehrmannYaser Sheikh
Modeling and rendering of dynamic scenes is challenging, as natural scenes often contain complex phenomena such as thin structures, evolving topology, translucency, scattering, occlusion, and biological motion. Mesh-based reconstruction and tracking often fail in these cases, and other approaches (e.g., light field video) typically rely on constrained viewing conditions, which limit interactivity. We circumvent these difficulties by presenting a learning-based approach to representing dynamic objects inspired by the integral projection model used in tomographic imaging. The approach is supervised directly from 2D images in a multi-view capture setting and does not require explicit reconstruction or tracking of the object. Our method has two primary components: an encoder-decoder network that transforms input images into a 3D volume representation, and a differentiable ray-marching operation that enables end-to-end training. By virtue of its 3D representation, our construction extrapolates better to novel viewpoints compared to screen-space rendering techniques. The encoder-decoder architecture learns a latent representation of a dynamic scene that enables us to produce novel content sequences not seen during training. To overcome memory limitations of voxel-based representations, we learn a dynamic irregular grid structure implemented with a warp field during ray-marching. This structure greatly improves the apparent resolution and reduces grid-like artifacts and jagged motion. Finally, we demonstrate how to incorporate surface-based representations into our volumetric-learning framework for applications where the highest resolution is required, using facial performance capture as a case in point.
ta
204) [2021] AnyoneNet: Synchronized Speech and Talking Head Generation for arbitrary person
AnyoneNet: Synchronized Speech and Talking Head Generation for arbitrary person
Xinsheng WangQicong XieJihua ZhuLei Xie Scharenborg
Automatically generating videos in which synthesized speech is synchronized with lip movements in a talking head has great potential in many human-computer interaction scenarios. In this paper, we present an automatic method to generate synchronized speech and talking-head videos on the basis of text and a single face image of an arbitrary person as input. In contrast to previous text-driven talking head generation methods, which can only synthesize the voice of a specific person, the proposed method is capable of synthesizing speech for any person that is inaccessible in the training stage. Specifically, the proposed method decomposes the generation of synchronized speech and talking head videos into two stages, i.e., a text-to-speech (TTS) stage and a speech-driven talking head generation stage. The proposed TTS module is a face-conditioned multi-speaker TTS model that gets the speaker identity information from face images instead of speech, which allows us to synthesize a personalized voice on the basis of the input face image. To generate the talking head videos from the face images, a facial landmark-based method that can predict both lip movements and head rotations is proposed. Extensive experiments demonstrate that the proposed method is able to generate synchronized speech and talking head videos for arbitrary persons and non-persons. Synthesized speech shows consistency with the given face regarding to the synthesized voice's timbre and one's appearance in the image, and the proposed landmark-based talking head method outperforms the state-of-the-art landmark-based method on generating natural talking head videos.
teng

Monday 09 August 2021

203) [2021] A Simple Baseline for StyleGAN Inversion
A Simple Baseline for StyleGAN Inversion
Tianyi WeiDongdong ChenWenbo ZhouJing LiaoWeiming ZhangLu YuanGang HuaNenghai Yu
This paper studies the problem of StyleGAN inversion, which plays an essential role in enabling the pretrained StyleGAN to be used for real facial image editing tasks. This problem has the high demand for quality and efficiency. Existing optimization-based methods can produce high quality results, but the optimization often takes a long time. On the contrary, forward-based methods are usually faster but the quality of their results is inferior. In this paper, we present a new feed-forward network for StyleGAN inversion, with significant improvement in terms of efficiency and quality. In our inversion network, we introduce: 1) a shallower backbone with multiple efficient heads across scales; 2) multi-layer identity loss and multi-layer face parsing loss to the loss function; and 3) multi-stage refinement. Combining these designs together forms a simple and efficient baseline method which exploits all benefits of optimization-based and forward-based methods. Quantitative and qualitative results show that our method performs better than existing forward-based methods and comparably to state-of-the-art optimization-based methods, while maintaining the high efficiency as well as forward-based methods. Moreover, a number of real image editing applications demonstrate the efficacy of our method. Our project page is ~\url{https://wty-ustc.github.io/inversion}.
teng
202) [2021] ReStyle: A Residual-Based StyleGAN Encoder via Iterative Refinement
ReStyle: A Residual-Based StyleGAN Encoder via Iterative Refinement
Yuval AlalufOr PatashnikDaniel Cohen-Or
Recently, the power of unconditional image synthesis has significantly advanced through the use of Generative Adversarial Networks (GANs). The task of inverting an image into its corresponding latent code of the trained GAN is of utmost importance as it allows for the manipulation of real images, leveraging the rich semantics learned by the network. Recognizing the limitations of current inversion approaches, in this work we present a novel inversion scheme that extends current encoder-based inversion methods by introducing an iterative refinement mechanism. Instead of directly predicting the latent code of a given real image using a single pass, the encoder is tasked with predicting a residual with respect to the current estimate of the inverted latent code in a self-correcting manner. Our residual-based encoder, named ReStyle, attains improved accuracy compared to current state-of-the-art encoder-based methods with a negligible increase in inference time. We analyze the behavior of ReStyle to gain valuable insights into its iterative nature. We then evaluate the performance of our residual encoder and analyze its robustness compared to optimization-based inversion and state-of-the-art encoders.
ploy
teng

Saturday 07 August 2021

201) [2021] World Model as a Graph: Learning Latent Landmarks for Planning
World Model as a Graph: Learning Latent Landmarks for Planning
Lunjun ZhangGe YangBradly C. Stadie
Planning, the ability to analyze the structure of a problem in the large and decompose it into interrelated subproblems, is a hallmark of human intelligence. While deep reinforcement learning (RL) ...
ta

Friday 06 August 2021

200) [2021] Cycle-Consistent Inverse GAN for Text-to-Image Synthesis
Cycle-Consistent Inverse GAN for Text-to-Image Synthesis
Hao WangGuosheng LinSteven C. H. HoiChunyan Miao
This paper investigates an open research task of text-to-image synthesis for automatically generating or manipulating images from text descriptions. Prevailing methods mainly use the text as conditions for GAN generation, and train different models for the text-guided image generation and manipulation tasks. In this paper, we propose a novel unified framework of Cycle-consistent Inverse GAN (CI-GAN) for both text-to-image generation and text-guided image manipulation tasks. Specifically, we first train a GAN model without text input, aiming to generate images with high diversity and quality. Then we learn a GAN inversion model to convert the images back to the GAN latent space and obtain the inverted latent codes for each image, where we introduce the cycle-consistency training to learn more robust and consistent inverted latent codes. We further uncover the latent space semantics of the trained GAN model, by learning a similarity model between text representations and the latent codes. In the text-guided optimization module, we generate images with the desired semantic attributes by optimizing the inverted latent codes. Extensive experiments on the Recipe1M and CUB datasets validate the efficacy of our proposed framework.
teng

Thursday 05 August 2021

199) [2018] Pose2Seg: Detection Free Human Instance Segmentation
Pose2Seg: Detection Free Human Instance Segmentation
Song-Hai ZhangRuilong LiXin DongPaul L. RosinZixi CaiHan XiDingcheng YangHao-Zhi HuangShi-Min Hu
The standard approach to image instance segmentation is to perform the object detection first, and then segment the object from the detection bounding-box. More recently, deep learning methods like Mask R-CNN perform them jointly. However, little research takes into account the uniqueness of the "human" category, which can be well defined by the pose skeleton. Moreover, the human pose skeleton can be used to better distinguish instances with heavy occlusion than using bounding-boxes. In this paper, we present a brand new pose-based instance segmentation framework for humans which separates instances based on human pose, rather than proposal region detection. We demonstrate that our pose-based framework can achieve better accuracy than the state-of-art detection-based approach on the human instance segmentation problem, and can moreover better handle occlusion. Furthermore, there are few public datasets containing many heavily occluded humans along with comprehensive annotations, which makes this a challenging problem seldom noticed by researchers. Therefore, in this paper we introduce a new benchmark "Occluded Human (OCHuman)", which focuses on occluded humans with comprehensive annotations including bounding-box, human pose and instance masks. This dataset contains 8110 detailed annotated human instances within 4731 images. With an average 0.67 MaxIoU for each person, OCHuman is the most complex and challenging dataset related to human instance segmentation. Through this dataset, we want to emphasize occlusion as a challenging problem for researchers to study.
ness

Wednesday 04 August 2021

198) [2016] Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields
Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields
Zhe CaoTomas SimonShih-En WeiYaser Sheikh
We present an approach to efficiently detect the 2D pose of multiple people in an image. The approach uses a nonparametric representation, which we refer to as Part Affinity Fields (PAFs), to learn to associate body parts with individuals in the image. The architecture encodes global context, allowing a greedy bottom-up parsing step that maintains high accuracy while achieving realtime performance, irrespective of the number of people in the image. The architecture is designed to jointly learn part locations and their association via two branches of the same sequential prediction process. Our method placed first in the inaugural COCO 2016 keypoints challenge, and significantly exceeds the previous state-of-the-art result on the MPII Multi-Person benchmark, both in performance and efficiency.
ness
197) [2020] Generative Modeling by Estimating Gradients of the Data Distribution
Generative Modeling by Estimating Gradients of the Data Distribution
Yang SongStefano Ermon
We introduce a new generative model where samples are produced via Langevin dynamics using gradients of the data distribution estimated with score matching. Because gradients can be ill-defined and hard to estimate when the data resides on low-dimensional manifolds, we perturb the data with different levels of Gaussian noise, and jointly estimate the corresponding scores, i.e., the vector fields of gradients of the perturbed data distribution for all noise levels. For sampling, we propose an annealed Langevin dynamics where we use gradients corresponding to gradually decreasing noise levels as the sampling process gets closer to the data manifold. Our framework allows flexible model architectures, requires no sampling during training or the use of adversarial methods, and provides a learning objective that can be used for principled model comparisons. Our models produce samples comparable to GANs on MNIST, CelebA and CIFAR-10 datasets, achieving a new state-of-the-art inception score of 8.87 on CIFAR-10. Additionally, we demonstrate that our models learn effective representations via image inpainting experiments.
star
aek
196) [2021] Score-Based Generative Modeling through Stochastic Differential Equations
Score-Based Generative Modeling through Stochastic Differential Equations
Yang SongJascha Sohl-DicksteinDiederik P. KingmaAbhishek KumarStefano ErmonBen Poole
Creating noise from data is easy; creating data from noise is generative modeling. We present a stochastic differential equation (SDE) that smoothly transforms a complex data distribution to a known prior distribution by slowly injecting noise, and a corresponding reverse-time SDE that transforms the prior distribution back into the data distribution by slowly removing the noise. Crucially, the reverse-time SDE depends only on the time-dependent gradient field (\aka, score) of the perturbed data distribution. By leveraging advances in score-based generative modeling, we can accurately estimate these scores with neural networks, and use numerical SDE solvers to generate samples. We show that this framework encapsulates previous approaches in score-based generative modeling and diffusion probabilistic modeling, allowing for new sampling procedures and new modeling capabilities. In particular, we introduce a predictor-corrector framework to correct errors in the evolution of the discretized reverse-time SDE. We also derive an equivalent neural ODE that samples from the same distribution as the SDE, but additionally enables exact likelihood computation, and improved sampling efficiency. In addition, we provide a new way to solve inverse problems with score-based models, as demonstrated with experiments on class-conditional generation, image inpainting, and colorization. Combined with multiple architectural improvements, we achieve record-breaking performance for unconditional image generation on CIFAR-10 with an Inception score of 9.89 and FID of 2.20, a competitive likelihood of 2.99 bits/dim, and demonstrate high fidelity generation of 1024 x 1024 images for the first time from a score-based generative model.
aek
195) [2017] Single-Shot Multi-Person 3D Pose Estimation From Monocular RGB
Single-Shot Multi-Person 3D Pose Estimation From Monocular RGB
Dushyant MehtaOleksandr SotnychenkoFranziska MuellerWeipeng XuSrinath SridharGerard Pons-MollChristian Theobalt
We propose a new single-shot method for multi-person 3D pose estimation in general scenes from a monocular RGB camera. Our approach uses novel occlusion-robust pose-maps (ORPM) which enable full body pose inference even under strong partial occlusions by other people and objects in the scene. ORPM outputs a fixed number of maps which encode the 3D joint locations of all people in the scene. Body part associations allow us to infer 3D pose for an arbitrary number of people without explicit bounding box prediction. To train our approach we introduce MuCo-3DHP, the first large scale training data set showing real images of sophisticated multi-person interactions and occlusions. We synthesize a large corpus of multi-person images by compositing images of individual people (with ground truth from mutli-view performance capture). We evaluate our method on our new challenging 3D annotated multi-person test set MuPoTs-3D where we achieve state-of-the-art performance. To further stimulate research in multi-person 3D pose estimation, we will make our new datasets, and associated code publicly available for research purposes.
ness

Tuesday 03 August 2021

194) [2019] Hiding Video in Audio via Reversible Generative Models
Hiding Video in Audio via Reversible Generative Models
Hyukryul YangHao OuyangVladlen KoltunQifeng Chen
We present a method for hiding video content inside audio files while preserving the perceptual fidelity of the cover audio. This is a form of cross-modal steganography and is particularly challenging due to the high bitrate of video. Our scheme uses recent advances in flow-based generative models, which enable mapping audio to latent codes such that nearby codes correspond to perceptually similar signals. We show that compressed video data can be concealed in the latent codes of audio sequences while preserving the fidelity of both the hidden video and the cover audio. We can embed 128x128 video inside same-duration audio, or higher-resolution video inside longer audio sequences. Quantitative experiments show that our approach outperforms relevant baselines in steganographic capacity and fidelity.
seminar
wit
193) [2018] The Unreasonable Effectiveness of Deep Features as a Perceptual Metric
The Unreasonable Effectiveness of Deep Features as a Perceptual Metric
Richard ZhangPhillip IsolaAlexei A. EfrosEli ShechtmanOliver Wang
While it is nearly effortless for humans to quickly assess the perceptual similarity between two images, the underlying processes are thought to be quite complex. Despite this, the most widely used perceptual metrics today, such as PSNR and SSIM, are simple, shallow functions, and fail to account for many nuances of human perception. Recently, the deep learning community has found that features of the VGG network trained on ImageNet classification has been remarkably useful as a training loss for image synthesis. But how perceptual are these so-called "perceptual losses"? What elements are critical for their success? To answer these questions, we introduce a new dataset of human perceptual similarity judgments. We systematically evaluate deep features across different architectures and tasks and compare them with classic metrics. We find that deep features outperform all previous metrics by large margins on our dataset. More surprisingly, this result is not restricted to ImageNet-trained VGG features, but holds across different deep architectures and levels of supervision (supervised, self-supervised, or even unsupervised). Our results suggest that perceptual similarity is an emergent property shared across deep visual representations.
ta
192) [2021] From Continuity to Editability: Inverting GANs with Consecutive Images
From Continuity to Editability: Inverting GANs with Consecutive Images
Yangyang XuYong DuWenpeng XiaoXuemiao XuShengfeng He
Existing GAN inversion methods are stuck in a paradox that the inverted codes can either achieve high-fidelity reconstruction, or retain the editing capability. Having only one of them clearly cannot realize real image editing. In this paper, we resolve this paradox by introducing consecutive images (\eg, video frames or the same person with different poses) into the inversion process. The rationale behind our solution is that the continuity of consecutive images leads to inherent editable directions. This inborn property is used for two unique purposes: 1) regularizing the joint inversion process, such that each of the inverted code is semantically accessible from one of the other and fastened in a editable domain; 2) enforcing inter-image coherence, such that the fidelity of each inverted code can be maximized with the complement of other images. Extensive experiments demonstrate that our alternative significantly outperforms state-of-the-art methods in terms of reconstruction fidelity and editability on both the real image dataset and synthesis dataset. Furthermore, our method provides the first support of video-based GAN inversion, and an interesting application of unsupervised semantic transfer from consecutive images. Source code can be found at: \url{https://github.com/cnnlstm/InvertingGANs_with_ConsecutiveImgs}.
teng
191) [2021] SDEdit: Image Synthesis and Editing with Stochastic Differential Equations
SDEdit: Image Synthesis and Editing with Stochastic Differential Equations
Chenlin MengYang SongJiaming SongJiajun WuJun-Yan ZhuStefano Ermon
We introduce a new image editing and synthesis framework, Stochastic Differential Editing (SDEdit), based on a recent generative model using stochastic differential equations (SDEs). Given an input image with user edits (e.g., hand-drawn color strokes), we first add noise to the input according to an SDE, and subsequently denoise it by simulating the reverse SDE to gradually increase its likelihood under the prior. Our method does not require task-specific loss function designs, which are critical components for recent image editing methods based on GAN inversion. Compared to conditional GANs, we do not need to collect new datasets of original and edited images for new applications. Therefore, our method can quickly adapt to various editing tasks at test time without re-training models. Our approach achieves strong performance on a wide range of applications, including image synthesis and editing guided by stroke paintings and image compositing.
teng
190) [2021] StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators
StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators
Rinon GalOr PatashnikHaggai MaronGal ChechikDaniel Cohen-Or
Can a generative model be trained to produce images from a specific domain, guided by a text prompt only, without seeing any image? In other words: can an image generator be trained blindly? Leveraging the semantic power of large scale Contrastive-Language-Image-Pre-training (CLIP) models, we present a text-driven method that allows shifting a generative model to new domains, without having to collect even a single image from those domains. We show that through natural language prompts and a few minutes of training, our method can adapt a generator across a multitude of domains characterized by diverse styles and shapes. Notably, many of these modifications would be difficult or outright impossible to reach with existing methods. We conduct an extensive set of experiments and comparisons across a wide range of domains. These demonstrate the effectiveness of our approach and show that our shifted models maintain the latent-space properties that make generative models appealing for downstream tasks.
teng
189) [2020] Catastrophic forgetting and mode collapse in GANs
Catastrophic forgetting and mode collapse in GANs
Hoang Thanh-TungTruyen Tran
In this paper, we show that Generative Adversarial Networks (GANs) suffer from catastrophic forgetting even when they are trained to approximate a single target distribution. We show that GAN training is a continual learning problem in which the sequence of changing model distributions is the sequence of tasks to the discriminator. The level of mismatch between tasks in the sequence determines the level of forgetting. Catastrophic forgetting is interrelated to mode collapse and can make the training of GANs non-convergent. We investigate the landscape of the discriminator's output in different variants of GANs and find that when a GAN converges to a good equilibrium, real training datapoints are wide local maxima of the discriminator. We empirically show the relationship between the sharpness of local maxima and mode collapse and generalization in GANs. We show how catastrophic forgetting prevents the discriminator from making real datapoints local maxima, and thus causes non-convergence. Finally, we study methods for preventing catastrophic forgetting in GANs.
star
ta

Sunday 01 August 2021

188) [2018] GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium
GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium
Martin HeuselHubert RamsauerThomas UnterthinerBernhard NesslerSepp Hochreiter
Generative Adversarial Networks (GANs) excel at creating realistic images with complex models for which maximum likelihood is infeasible. However, the convergence of GAN training has still not been proved. We propose a two time-scale update rule (TTUR) for training GANs with stochastic gradient descent on arbitrary GAN loss functions. TTUR has an individual learning rate for both the discriminator and the generator. Using the theory of stochastic approximation, we prove that the TTUR converges under mild assumptions to a stationary local Nash equilibrium. The convergence carries over to the popular Adam optimization, for which we prove that it follows the dynamics of a heavy ball with friction and thus prefers flat minima in the objective landscape. For the evaluation of the performance of GANs at image generation, we introduce the "Fr\'echet Inception Distance" (FID) which captures the similarity of generated images to real ones better than the Inception Score. In experiments, TTUR improves learning for DCGANs and Improved Wasserstein GANs (WGAN-GP) outperforming conventional GAN training on CelebA, CIFAR-10, SVHN, LSUN Bedrooms, and the One Billion Word Benchmark.
ta
187) [2018] Generative Adversarial Network Training is a Continual Learning Problem
Generative Adversarial Network Training is a Continual Learning Problem
Kevin J. LiangChunyuan LiGuoyin WangLawrence Carin
Generative Adversarial Networks (GANs) have proven to be a powerful framework for learning to draw samples from complex distributions. However, GANs are also notoriously difficult to train, with mode collapse and oscillations a common problem. We hypothesize that this is at least in part due to the evolution of the generator distribution and the catastrophic forgetting tendency of neural networks, which leads to the discriminator losing the ability to remember synthesized samples from previous instantiations of the generator. Recognizing this, our contributions are twofold. First, we show that GAN training makes for a more interesting and realistic benchmark for continual learning methods evaluation than some of the more canonical datasets. Second, we propose leveraging continual learning techniques to augment the discriminator, preserving its ability to recognize previous generator samples. We show that the resulting methods add only a light amount of computation, involve minimal changes to the model, and result in better overall performance on the examined image and text generation tasks.
ta
186) [2020] A Review on Generative Adversarial Networks: Algorithms, Theory, and Applications
A Review on Generative Adversarial Networks: Algorithms, Theory, and Applications
Jie GuiZhenan SunYonggang WenDacheng TaoJieping Ye
Generative adversarial networks (GANs) are a hot research topic recently. GANs have been widely studied since 2014, and a large number of algorithms have been proposed. However, there is few comprehensive study explaining the connections among different GANs variants, and how they have evolved. In this paper, we attempt to provide a review on various GANs methods from the perspectives of algorithms, theory, and applications. Firstly, the motivations, mathematical representations, and structure of most GANs algorithms are introduced in details. Furthermore, GANs have been combined with other machine learning algorithms for specific applications, such as semi-supervised learning, transfer learning, and reinforcement learning. This paper compares the commonalities and differences of these GANs methods. Secondly, theoretical issues related to GANs are investigated. Thirdly, typical applications of GANs in image processing and computer vision, natural language processing, music, speech and audio, medical field, and data science are illustrated. Finally, the future open research problems for GANs are pointed out.
ta
185) [2012] A Kernel Two-Sample Test
A Kernel Two-Sample Test
Arthur GrettonKarsten M. BorgwardtMalte J. RaschBernhard SchölkopfAlexander Smola
ta

Saturday 31 July 2021

184) [2019] Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Image Segmentation
Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Image Segmentation
Chenxi LiuLiang-Chieh ChenFlorian SchroffHartwig AdamWei HuaAlan YuilleLi Fei-Fei
Recently, Neural Architecture Search (NAS) has successfully identified neural network architectures that exceed human designed ones on large-scale image classification. In this paper, we study NAS for semantic image segmentation. Existing works often focus on searching the repeatable cell structure, while hand-designing the outer network structure that controls the spatial resolution changes. This choice simplifies the search space, but becomes increasingly problematic for dense image prediction which exhibits a lot more network level architectural variations. Therefore, we propose to search the network level structure in addition to the cell level structure, which forms a hierarchical architecture search space. We present a network level search space that includes many popular designs, and develop a formulation that allows efficient gradient-based architecture search (3 P100 GPU days on Cityscapes images). We demonstrate the effectiveness of the proposed method on the challenging Cityscapes, PASCAL VOC 2012, and ADE20K datasets. Auto-DeepLab, our architecture searched specifically for semantic image segmentation, attains state-of-the-art performance without any ImageNet pretraining.
seminar
wit
183) [2020] Deep White-Balance Editing
Deep White-Balance Editing
Mahmoud AfifiMichael S. Brown
We introduce a deep learning approach to realistically edit an sRGB image's white balance. Cameras capture sensor images that are rendered by their integrated signal processor (ISP) to a standard RGB (sRGB) color space encoding. The ISP rendering begins with a white-balance procedure that is used to remove the color cast of the scene's illumination. The ISP then applies a series of nonlinear color manipulations to enhance the visual quality of the final sRGB image. Recent work by [3] showed that sRGB images that were rendered with the incorrect white balance cannot be easily corrected due to the ISP's nonlinear rendering. The work in [3] proposed a k-nearest neighbor (KNN) solution based on tens of thousands of image pairs. We propose to solve this problem with a deep neural network (DNN) architecture trained in an end-to-end manner to learn the correct white balance. Our DNN maps an input image to two additional white-balance settings corresponding to indoor and outdoor illuminations. Our solution not only is more accurate than the KNN approach in terms of correcting a wrong white-balance setting but also provides the user the freedom to edit the white balance in the sRGB image to other illumination settings.
seminar
wit
182) [2019] Depth-wise Decomposition for Accelerating Separable Convolutions in Efficient Convolutional Neural Networks
Depth-wise Decomposition for Accelerating Separable Convolutions in Efficient Convolutional Neural Networks
Yihui HeJianing QianJianren Wang
Very deep convolutional neural networks (CNNs) have been firmly established as the primary methods for many computer vision tasks. However, most state-of-the-art CNNs are large, which results in high inference latency. Recently, depth-wise separable convolution has been proposed for image recognition tasks on computationally limited platforms such as robotics and self-driving cars. Though it is much faster than its counterpart, regular convolution, accuracy is sacrificed. In this paper, we propose a novel decomposition approach based on SVD, namely depth-wise decomposition, for expanding regular convolutions into depthwise separable convolutions while maintaining high accuracy. We show our approach can be further generalized to the multi-channel and multi-layer cases, based on Generalized Singular Value Decomposition (GSVD) [59]. We conduct thorough experiments with the latest ShuffleNet V2 model [47] on both random synthesized dataset and a large-scale image recognition dataset: ImageNet [10]. Our approach outperforms channel decomposition [73] on all datasets. More importantly, our approach improves the Top-1 accuracy of ShuffleNet V2 by ~2%.
seminar
wit
181) [2019] Everybody Dance Now
Everybody Dance Now
Caroline ChanShiry GinosarTinghui ZhouAlexei A. Efros
This paper presents a simple method for "do as I do" motion transfer: given a source video of a person dancing, we can transfer that performance to a novel (amateur) target after only a few minutes of the target subject performing standard moves. We approach this problem as video-to-video translation using pose as an intermediate representation. To transfer the motion, we extract poses from the source subject and apply the learned pose-to-appearance mapping to generate the target subject. We predict two consecutive frames for temporally coherent video results and introduce a separate pipeline for realistic face synthesis. Although our method is quite simple, it produces surprisingly compelling results (see video). This motivates us to also provide a forensics tool for reliable synthetic content detection, which is able to distinguish videos synthesized by our system from real data. In addition, we release a first-of-its-kind open-source dataset of videos that can be legally used for training and motion transfer.
seminar
wit
180) [2014] Going Deeper with Convolutions
Going Deeper with Convolutions
Christian SzegedyWei LiuYangqing JiaPierre SermanetScott ReedDragomir AnguelovDumitru ErhanVincent VanhouckeAndrew Rabinovich
We propose a deep convolutional neural network architecture codenamed "Inception", which was responsible for setting the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC 2014). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. This was achieved by a carefully crafted design that allows for increasing the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC 2014 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.
seminar
wit
179) [2017] MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
Andrew G. HowardMenglong ZhuBo ChenDmitry KalenichenkoWeijun WangTobias WeyandMarco AndreettoHartwig Adam
We present a class of efficient models called MobileNets for mobile and embedded vision applications. MobileNets are based on a streamlined architecture that uses depth-wise separable convolutions to build light weight deep neural networks. We introduce two simple global hyper-parameters that efficiently trade off between latency and accuracy. These hyper-parameters allow the model builder to choose the right sized model for their application based on the constraints of the problem. We present extensive experiments on resource and accuracy tradeoffs and show strong performance compared to other popular models on ImageNet classification. We then demonstrate the effectiveness of MobileNets across a wide range of applications and use cases including object detection, finegrain classification, face attributes and large scale geo-localization.
seminar
wit
178) [2019] Point-Voxel CNN for Efficient 3D Deep Learning
Point-Voxel CNN for Efficient 3D Deep Learning
Zhijian LiuHaotian TangYujun LinSong Han
We present Point-Voxel CNN (PVCNN) for efficient, fast 3D deep learning. Previous work processes 3D data using either voxel-based or point-based NN models. However, both approaches are computationally inefficient. The computation cost and memory footprints of the voxel-based models grow cubically with the input resolution, making it memory-prohibitive to scale up the resolution. As for point-based networks, up to 80% of the time is wasted on structuring the sparse data which have rather poor memory locality, not on the actual feature extraction. In this paper, we propose PVCNN that represents the 3D input data in points to reduce the memory consumption, while performing the convolutions in voxels to reduce the irregular, sparse data access and improve the locality. Our PVCNN model is both memory and computation efficient. Evaluated on semantic and part segmentation datasets, it achieves much higher accuracy than the voxel-based baseline with 10x GPU memory reduction; it also outperforms the state-of-the-art point-based models with 7x measured speedup on average. Remarkably, the narrower version of PVCNN achieves 2x speedup over PointNet (an extremely efficient model) on part and scene segmentation benchmarks with much higher accuracy. We validate the general effectiveness of PVCNN on 3D object detection: by replacing the primitives in Frustrum PointNet with PVConv, it outperforms Frustrum PointNet++ by 2.4% mAP on average with 1.5x measured speedup and GPU memory reduction.
seminar
teng
177) [2015] Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen SimonyanAndrew Zisserman
In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.
seminar
wit
176) [2017] Xception: Deep Learning with Depthwise Separable Convolutions
Xception: Deep Learning with Depthwise Separable Convolutions
François Chollet
We present an interpretation of Inception modules in convolutional neural networks as being an intermediate step in-between regular convolution and the depthwise separable convolution operation (a depthwise convolution followed by a pointwise convolution). In this light, a depthwise separable convolution can be understood as an Inception module with a maximally large number of towers. This observation leads us to propose a novel deep convolutional neural network architecture inspired by Inception, where Inception modules have been replaced with depthwise separable convolutions. We show that this architecture, dubbed Xception, slightly outperforms Inception V3 on the ImageNet dataset (which Inception V3 was designed for), and significantly outperforms Inception V3 on a larger image classification dataset comprising 350 million images and 17,000 classes. Since the Xception architecture has the same number of parameters as Inception V3, the performance gains are not due to increased capacity but rather to a more efficient use of model parameters.
seminar
wit
175) [2019] One ticket to win them all: generalizing lottery ticket initializations across datasets and optimizers
One ticket to win them all: generalizing lottery ticket initializations across datasets and optimizers
Ari S. MorcosHaonan YuMichela PaganiniYuandong Tian
The success of lottery ticket initializations (Frankle and Carbin, 2019) suggests that small, sparsified networks can be trained so long as the network is initialized appropriately. Unfortunately, finding these "winning ticket" initializations is computationally expensive. One potential solution is to reuse the same winning tickets across a variety of datasets and optimizers. However, the generality of winning ticket initializations remains unclear. Here, we attempt to answer this question by generating winning tickets for one training configuration (optimizer and dataset) and evaluating their performance on another configuration. Perhaps surprisingly, we found that, within the natural images domain, winning ticket initializations generalized across a variety of datasets, including Fashion MNIST, SVHN, CIFAR-10/100, ImageNet, and Places365, often achieving performance close to that of winning tickets generated on the same dataset. Moreover, winning tickets generated using larger datasets consistently transferred better than those generated using smaller datasets. We also found that winning ticket initializations generalize across optimizers with high performance. These results suggest that winning ticket initializations generated by sufficiently large datasets contain inductive biases generic to neural networks more broadly which improve training across many settings and provide hope for the development of better initialization methods.
pure
seminar
ta
174) [2020] Deconstructing Lottery Tickets: Zeros, Signs, and the Supermask
Deconstructing Lottery Tickets: Zeros, Signs, and the Supermask
Hattie ZhouJanice LanRosanne LiuJason Yosinski
The recent "Lottery Ticket Hypothesis" paper by Frankle & Carbin showed that a simple approach to creating sparse networks (keeping the large weights) results in models that are trainable from scratch, but only when starting from the same initial weights. The performance of these networks often exceeds the performance of the non-sparse base model, but for reasons that were not well understood. In this paper we study the three critical components of the Lottery Ticket (LT) algorithm, showing that each may be varied significantly without impacting the overall results. Ablating these factors leads to new insights for why LT networks perform as well as they do. We show why setting weights to zero is important, how signs are all you need to make the reinitialized network train, and why masking behaves like training. Finally, we discover the existence of Supermasks, masks that can be applied to an untrained, randomly initialized network to produce a model with performance far better than chance (86% on MNIST, 41% on CIFAR-10).
pure
seminar
173) [2021] AdderNet: Do We Really Need Multiplications in Deep Learning?
AdderNet: Do We Really Need Multiplications in Deep Learning?
Hanting ChenYunhe WangChunjing XuBoxin ShiChao XuQi TianChang Xu
Compared with cheap addition operation, multiplication operation is of much higher computation complexity. The widely-used convolutions in deep neural networks are exactly cross-correlation to measure the similarity between input feature and convolution filters, which involves massive multiplications between float values. In this paper, we present adder networks (AdderNets) to trade these massive multiplications in deep neural networks, especially convolutional neural networks (CNNs), for much cheaper additions to reduce computation costs. In AdderNets, we take the $\ell_1$-norm distance between filters and input feature as the output response. The influence of this new similarity measure on the optimization of neural network have been thoroughly analyzed. To achieve a better performance, we develop a special back-propagation approach for AdderNets by investigating the full-precision gradient. We then propose an adaptive learning rate strategy to enhance the training procedure of AdderNets according to the magnitude of each neuron's gradient. As a result, the proposed AdderNets can achieve 74.9% Top-1 accuracy 91.7% Top-5 accuracy using ResNet-50 on the ImageNet dataset without any multiplication in convolution layer. The codes are publicly available at: https://github.com/huaweinoah/AdderNet.
star
seminar
ta
wit
172) [2020] Differentiable Hierarchical Graph Grouping for Multi-Person Pose Estimation
Differentiable Hierarchical Graph Grouping for Multi-Person Pose Estimation
Sheng JinWentao LiuEnze XieWenhai WangChen QianWanli OuyangPing Luo
Multi-person pose estimation is challenging because it localizes body keypoints for multiple persons simultaneously. Previous methods can be divided into two streams, i.e. top-down and bottom-up methods. The top-down methods localize keypoints after human detection, while the bottom-up methods localize keypoints directly and then cluster/group them for different persons, which are generally more efficient than top-down methods. However, in existing bottom-up methods, the keypoint grouping is usually solved independently from keypoint detection, making them not end-to-end trainable and have sub-optimal performance. In this paper, we investigate a new perspective of human part grouping and reformulate it as a graph clustering task. Especially, we propose a novel differentiable Hierarchical Graph Grouping (HGG) method to learn the graph grouping in bottom-up multi-person pose estimation task. Moreover, HGG is easily embedded into main-stream bottom-up methods. It takes human keypoint candidates as graph nodes and clusters keypoints in a multi-layer graph neural network model. The modules of HGG can be trained end-to-end with the keypoint detection network and is able to supervise the grouping process in a hierarchical manner. To improve the discrimination of the clustering, we add a set of edge discriminators and macro-node discriminators. Extensive experiments on both COCO and OCHuman datasets demonstrate that the proposed method improves the performance of bottom-up pose estimation methods.
ness
171) [2021] Learning 3D Shape Feature for Texture-Insensitive Person Re-Identification
Learning 3D Shape Feature for Texture-Insensitive Person Re-Identification
Jiaxing ChenXinyang JiangFudong WangJun ZhangFeng ZhengXing SunWei-Shi Zheng
ness

Friday 30 July 2021

170) [2021] A Comprehensive Survey on Graph Neural Networks
A Comprehensive Survey on Graph Neural Networks
Zonghan WuShirui PanFengwen ChenGuodong LongChengqi ZhangPhilip S. Yu
Deep learning has revolutionized many machine learning tasks in recent years, ranging from image classification and video processing to speech recognition and natural language understanding. The data in these tasks are typically represented in the Euclidean space. However, there is an increasing number of applications where data are generated from non-Euclidean domains and are represented as graphs with complex relationships and interdependency between objects. The complexity of graph data has imposed significant challenges on existing machine learning algorithms. Recently, many studies on extending deep learning approaches for graph data have emerged. In this survey, we provide a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields. We propose a new taxonomy to divide the state-of-the-art graph neural networks into four categories, namely recurrent graph neural networks, convolutional graph neural networks, graph autoencoders, and spatial-temporal graph neural networks. We further discuss the applications of graph neural networks across various domains and summarize the open source codes, benchmark data sets, and model evaluation of graph neural networks. Finally, we propose potential research directions in this rapidly growing field.
seminar
wit

Wednesday 28 July 2021

169) [2021] YOLOX: Exceeding YOLO Series in 2021
YOLOX: Exceeding YOLO Series in 2021
Zheng GeSongtao LiuFeng WangZeming LiJian Sun
In this report, we present some experienced improvements to YOLO series, forming a new high-performance detector -- YOLOX. We switch the YOLO detector to an anchor-free manner and conduct other advanced detection techniques, i.e., a decoupled head and the leading label assignment strategy SimOTA to achieve state-of-the-art results across a large scale range of models: For YOLO-Nano with only 0.91M parameters and 1.08G FLOPs, we get 25.3% AP on COCO, surpassing NanoDet by 1.8% AP; for YOLOv3, one of the most widely used detectors in industry, we boost it to 47.3% AP on COCO, outperforming the current best practice by 3.0% AP; for YOLOX-L with roughly the same amount of parameters as YOLOv4-CSP, YOLOv5-L, we achieve 50.0% AP on COCO at a speed of 68.9 FPS on Tesla V100, exceeding YOLOv5-L by 1.8% AP. Further, we won the 1st Place on Streaming Perception Challenge (Workshop on Autonomous Driving at CVPR 2021) using a single YOLOX-L model. We hope this report can provide useful experience for developers and researchers in practical scenes, and we also provide deploy versions with ONNX, TensorRT, NCNN, and Openvino supported. Source code is at https://github.com/Megvii-BaseDetection/YOLOX.
teng
168) [2021] DOVE: Learning Deformable 3D Objects by Watching Videos
DOVE: Learning Deformable 3D Objects by Watching Videos
Shangzhe WuTomas JakabChristian RupprechtAndrea Vedaldi
Learning deformable 3D objects from 2D images is an extremely ill-posed problem. Existing methods rely on explicit supervision to establish multi-view correspondences, such as template shape models and keypoint annotations, which restricts their applicability on objects "in the wild". In this paper, we propose to use monocular videos, which naturally provide correspondences across time, allowing us to learn 3D shapes of deformable object categories without explicit keypoints or template shapes. Specifically, we present DOVE, which learns to predict 3D canonical shape, deformation, viewpoint and texture from a single 2D image of a bird, given a bird video collection as well as automatically obtained silhouettes and optical flows as training data. Our method reconstructs temporally consistent 3D shape and deformation, which allows us to animate and re-render the bird from arbitrary viewpoints from a single image.
teng
167) [2021] Explaining in Style: Training a GAN to explain a classifier in StyleSpace
Explaining in Style: Training a GAN to explain a classifier in StyleSpace
Oran LangYossi GandelsmanMichal YaromYoav WaldGal ElidanAvinatan HassidimWilliam T. FreemanPhillip IsolaAmir GlobersonMichal IraniInbar Mosseri
Image classification models can depend on multiple different semantic attributes of the image. An explanation of the decision of the classifier needs to both discover and visualize these properties. Here we present StylEx, a method for doing this, by training a generative model to specifically explain multiple attributes that underlie classifier decisions. A natural source for such attributes is the StyleSpace of StyleGAN, which is known to generate semantically meaningful dimensions in the image. However, because standard GAN training is not dependent on the classifier, it may not represent these attributes which are important for the classifier decision, and the dimensions of StyleSpace may represent irrelevant attributes. To overcome this, we propose a training procedure for a StyleGAN, which incorporates the classifier model, in order to learn a classifier-specific StyleSpace. Explanatory attributes are then selected from this space. These can be used to visualize the effect of changing multiple attributes per image, thus providing image-specific explanations. We apply StylEx to multiple domains, including animals, leaves, faces and retinal images. For these, we show how an image can be modified in different ways to change its classifier output. Our results show that the method finds attributes that align well with semantic ones, generate meaningful image-specific explanations, and are human-interpretable as measured in user-studies.
ploy
teng
166) [2021] LARGE: Latent-Based Regression through GAN Semantics
LARGE: Latent-Based Regression through GAN Semantics
Yotam NitzanRinon GalOfir BrennerDaniel Cohen-Or
We propose a novel method for solving regression tasks using few-shot or weak supervision. At the core of our method is the fundamental observation that GANs are incredibly successful at encoding semantic information within their latent space, even in a completely unsupervised setting. For modern generative frameworks, this semantic encoding manifests as smooth, linear directions which affect image attributes in a disentangled manner. These directions have been widely used in GAN-based image editing. We show that such directions are not only linear, but that the magnitude of change induced on the respective attribute is approximately linear with respect to the distance traveled along them. By leveraging this observation, our method turns a pre-trained GAN into a regression model, using as few as two labeled samples. This enables solving regression tasks on datasets and attributes which are difficult to produce quality supervision for. Additionally, we show that the same latent-distances can be used to sort collections of images by the strength of given attributes, even in the absence of explicit supervision. Extensive experimental evaluations demonstrate that our method can be applied across a wide range of domains, leverage multiple latent direction discovery frameworks, and achieve state-of-the-art results in few-shot and low-supervision settings, even when compared to methods designed to tackle a single task.
teng

Tuesday 27 July 2021

165) [2020] FaceShifter: Towards High Fidelity And Occlusion Aware Face Swapping
FaceShifter: Towards High Fidelity And Occlusion Aware Face Swapping
Lingzhi LiJianmin BaoHao YangDong ChenFang Wen
In this work, we propose a novel two-stage framework, called FaceShifter, for high fidelity and occlusion aware face swapping. Unlike many existing face swapping works that leverage only limited information from the target image when synthesizing the swapped face, our framework, in its first stage, generates the swapped face in high-fidelity by exploiting and integrating the target attributes thoroughly and adaptively. We propose a novel attributes encoder for extracting multi-level target face attributes, and a new generator with carefully designed Adaptive Attentional Denormalization (AAD) layers to adaptively integrate the identity and the attributes for face synthesis. To address the challenging facial occlusions, we append a second stage consisting of a novel Heuristic Error Acknowledging Refinement Network (HEAR-Net). It is trained to recover anomaly regions in a self-supervised way without any manual annotations. Extensive experiments on wild faces demonstrate that our face swapping results are not only considerably more perceptually appealing, but also better identity preserving in comparison to other state-of-the-art methods.
wit
164) [2021] Unsupervised Discovery of Object Radiance Fields
Unsupervised Discovery of Object Radiance Fields
Hong-Xing YuLeonidas J. GuibasJiajun Wu
We study the problem of inferring an object-centric scene representation from a single image, aiming to derive a representation that explains the image formation process, captures the scene's 3D nature, and is learned without supervision. Most existing methods on scene decomposition lack one or more of these characteristics, due to the fundamental challenge in integrating the complex 3D-to-2D image formation process into powerful inference schemes like deep networks. In this paper, we propose unsupervised discovery of Object Radiance Fields (uORF), integrating recent progresses in neural 3D scene representations and rendering with deep inference networks for unsupervised 3D scene decomposition. Trained on multi-view RGB images without annotations, uORF learns to decompose complex scenes with diverse, textured background from a single image. We show that uORF performs well on unsupervised 3D scene segmentation, novel view synthesis, and scene editing on three datasets.
pure
ta

Monday 26 July 2021

163) [2020] VIBE: Video Inference for Human Body Pose and Shape Estimation
VIBE: Video Inference for Human Body Pose and Shape Estimation
Muhammed KocabasNikos AthanasiouMichael J. Black
mint
162) Body Meshes as Points
Body Meshes as Points
Jianfeng ZhangDongdong YuJun Hao LiewXuecheng NieJiashi Feng
We consider the challenging multi-person 3D body mesh estimation task in this work. Existing methods are mostly two-stage based—one stage for person localization and the other stage for individual body mesh estimation, leading to redundant pipelines with high computation cost and degraded performance for complex scenes (e.g., occluded person instances). In this work, we present a singlestage model, Body Meshes as Points (BMP), to simplify the pipeline and lift both efficiency and performance. In particular, BMP adopts a new method that represents multiple person instances as points in the spatial-depth space where each point is associated with one body mesh. Hinging on such representations, BMP can directly predict body meshes for multiple persons in a single stage by concurrently localizing person instance points and estimating the corresponding body meshes. To better reason about depth ordering of all the persons within the same scene, BMP designs a simple yet effective inter-instance ordinal depth loss to obtain depth-coherent body mesh estimation. BMP also introduces a novel keypoint-aware augmentation to enhance model robustness to occluded person instances. Comprehensive experiments on benchmarks Panoptic, MuPoTS3D and 3DPW clearly demonstrate the state-of-the-art efficiency of BMP for multi-person body mesh estimation, together with outstanding accuracy. Code can be found at: https://github.com/jfzhang95/BMP.
seminar
161) [2016] MARS: A Video Benchmark for Large-Scale Person Re-Identification
MARS: A Video Benchmark for Large-Scale Person Re-Identification
Liang ZhengZhi BieYifan SunJingdong WangChi SuShengjin WangQi Tian
This paper considers person re-identification (re-id) in videos. We introduce a new video re-id dataset, named Motion Analysis and Re-identification Set (MARS), a video extension of the Market-1501...
ness
160) Full Text PDF
Full Text PDF
159) [2021] PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation
PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation
Kehong GongJianfeng ZhangJiashi Feng
Existing 3D human pose estimators suffer poor generalization performance to new datasets, largely due to the limited diversity of 2D-3D pose pairs in the training data. To address this problem, we present PoseAug, a new auto-augmentation framework that learns to augment the available training poses towards a greater diversity and thus improve generalization of the trained 2D-to-3D pose estimator. Specifically, PoseAug introduces a novel pose augmentor that learns to adjust various geometry factors (e.g., posture, body size, view point and position) of a pose through differentiable operations. With such differentiable capacity, the augmentor can be jointly optimized with the 3D pose estimator and take the estimation error as feedback to generate more diverse and harder poses in an online manner. Moreover, PoseAug introduces a novel part-aware Kinematic Chain Space for evaluating local joint-angle plausibility and develops a discriminative module accordingly to ensure the plausibility of the augmented poses. These elaborate designs enable PoseAug to generate more diverse yet plausible poses than existing offline augmentation methods, and thus yield better generalization of the pose estimator. PoseAug is generic and easy to be applied to various 3D pose estimators. Extensive experiments demonstrate that PoseAug brings clear improvements on both intra-scenario and cross-scenario datasets. Notably, it achieves 88.6% 3D PCK on MPI-INF-3DHP under cross-dataset evaluation setup, improving upon the previous best data augmentation based method by 9.1%. Code can be found at: https://github.com/jfzhang95/PoseAug.
ness
158) [2021] ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search
ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search
Lumin XuYingda GuanSheng JinWentao LiuChen QianPing LuoWanli OuyangXiaogang Wang
Human pose estimation has achieved significant progress in recent years. However, most of the recent methods focus on improving accuracy using complicated models and ignoring real-time efficiency. To achieve a better trade-off between accuracy and efficiency, we propose a novel neural architecture search (NAS) method, termed ViPNAS, to search networks in both spatial and temporal levels for fast online video pose estimation. In the spatial level, we carefully design the search space with five different dimensions including network depth, width, kernel size, group number, and attentions. In the temporal level, we search from a series of temporal feature fusions to optimize the total accuracy and speed across multiple video frames. To the best of our knowledge, we are the first to search for the temporal feature fusion and automatic computation allocation in videos. Extensive experiments demonstrate the effectiveness of our approach on the challenging COCO2017 and PoseTrack2018 datasets. Our discovered model family, S-ViPNAS and T-ViPNAS, achieve significantly higher inference speed (CPU real-time) without sacrificing the accuracy compared to the previous state-of-the-art methods.
ness

Sunday 25 July 2021

157) [2021] CMU-GPR Dataset: Ground Penetrating Radar Dataset for Robot Localization and Mapping
CMU-GPR Dataset: Ground Penetrating Radar Dataset for Robot Localization and Mapping
Alexander BaikovitzPaloma SodhiMichael DilleMichael Kaess
There has been exciting recent progress in using radar as a sensor for robot navigation due to its increased robustness to varying environmental conditions. However, within these different radar perception systems, ground penetrating radar (GPR) remains under-explored. By measuring structures beneath the ground, GPR can provide stable features that are less variant to ambient weather, scene, and lighting changes, making it a compelling choice for long-term spatio-temporal mapping. In this work, we present the CMU-GPR dataset--an open-source ground penetrating radar dataset for research in subsurface-aided perception for robot navigation. In total, the dataset contains 15 distinct trajectory sequences in 3 GPS-denied, indoor environments. Measurements from a GPR, wheel encoder, RGB camera, and inertial measurement unit were collected with ground truth positions from a robotic total station. In addition to the dataset, we also provide utility code to convert raw GPR data into processed images. This paper describes our recording platform, the data format, utility scripts, and proposed methods for using this data.
nick
156) [2021] Wireless Indoor Localization Problem with Artificial Neural Network
Wireless Indoor Localization Problem with Artificial Neural Network
Furkan KardaşÖmer Karal
nick
155) [2021] High-precision Localization Allows New Applications
High-precision Localization Allows New Applications
Michael Pollner
nick
154) [2021] Real-time Passive Localization of TDOA via Neural Networks
Real-time Passive Localization of TDOA via Neural Networks
Zewen WangDexiu HuYongjun ZhaoZhaocheng HuZhixin Liu
This letter proposes the use of neural networks to realize the passive localization by signal time difference of arrival (TDOA). In the face of multiple complex targets with radiation sources in a specific area, real-time localization is an urgent problem. In this letter, positions of the known targets from the prior data are obtained and their time difference is calculated, which will be connected as data pairs and input to the neural network trained to obtain a corresponding model. Subsequently, unknown targets can be localized by this network. It is verified that the localization accuracy of the algorithm is reliable and its robustness is higher than that of traditional algorithms. The proposed method also shows that great reduction of operation time depending on the previous network training can complete real-time goals.
nick
153) [2020] NeRF++: Analyzing and Improving Neural Radiance Fields
NeRF++: Analyzing and Improving Neural Radiance Fields
Kai ZhangGernot RieglerNoah SnavelyVladlen Koltun
Neural Radiance Fields (NeRF) achieve impressive view synthesis results for a variety of capture settings, including 360 capture of bounded scenes and forward-facing capture of bounded and unbounded scenes. NeRF fits multi-layer perceptrons (MLPs) representing view-invariant opacity and view-dependent color volumes to a set of training images, and samples novel views based on volume rendering techniques. In this technical report, we first remark on radiance fields and their potential ambiguities, namely the shape-radiance ambiguity, and analyze NeRF's success in avoiding such ambiguities. Second, we address a parametrization issue involved in applying NeRF to 360 captures of objects within large-scale, unbounded 3D scenes. Our method improves view synthesis fidelity in this challenging scenario. Code is available at https://github.com/Kai-46/nerfplusplus.
ta

Thursday 22 July 2021

152) [2019] Learning Implicit Generative Models by Matching Perceptual Features
Learning Implicit Generative Models by Matching Perceptual Features
Cicero Nogueira dos SantosYoussef MrouehInkit PadhiPierre Dognin
Perceptual features (PFs) have been used with great success in tasks such as transfer learning, style transfer, and super-resolution. However, the efficacy of PFs as key source of information for learning generative models is not well studied. We investigate here the use of PFs in the context of learning implicit generative models through moment matching (MM). More specifically, we propose a new effective MM approach that learns implicit generative models by performing mean and covariance matching of features extracted from pretrained ConvNets. Our proposed approach improves upon existing MM methods by: (1) breaking away from the problematic min/max game of adversarial learning; (2) avoiding online learning of kernel functions; and (3) being efficient with respect to both number of used moments and required minibatch size. Our experimental results demonstrate that, due to the expressiveness of PFs from pretrained deep ConvNets, our method achieves state-of-the-art results for challenging benchmarks.
aek
ta
151) [2017] MMD GAN: Towards Deeper Understanding of Moment Matching Network
MMD GAN: Towards Deeper Understanding of Moment Matching Network
Chun-Liang LiWei-Cheng ChangYu ChengYiming YangBarnabás Póczos
Generative moment matching network (GMMN) is a deep generative model that differs from Generative Adversarial Network (GAN) by replacing the discriminator in GAN with a two-sample test based on kernel maximum mean discrepancy (MMD). Although some theoretical guarantees of MMD have been studied, the empirical performance of GMMN is still not as competitive as that of GAN on challenging and large benchmark datasets. The computational efficiency of GMMN is also less desirable in comparison with GAN, partially due to its requirement for a rather large batch size during the training. In this paper, we propose to improve both the model expressiveness of GMMN and its computational efficiency by introducing adversarial kernel learning techniques, as the replacement of a fixed Gaussian kernel in the original GMMN. The new approach combines the key ideas in both GMMN and GAN, hence we name it MMD GAN. The new distance measure in MMD GAN is a meaningful loss that enjoys the advantage of weak topology and can be optimized via gradient descent with relatively small batch sizes. In our evaluation on multiple benchmark datasets, including MNIST, CIFAR- 10, CelebA and LSUN, the performance of MMD-GAN significantly outperforms GMMN, and is competitive with other representative GAN works.
ta
150) [2020] COCO-FUNIT: Few-Shot Unsupervised Image Translation with a Content Conditioned Style Encoder
COCO-FUNIT: Few-Shot Unsupervised Image Translation with a Content Conditioned Style Encoder
Kuniaki SaitoKate SaenkoMing-Yu Liu
Unsupervised image-to-image translation intends to learn a mapping of an image in a given domain to an analogous image in a different domain, without explicit supervision of the mapping. Few-shot unsupervised image-to-image translation further attempts to generalize the model to an unseen domain by leveraging example images of the unseen domain provided at inference time. While remarkably successful, existing few-shot image-to-image translation models find it difficult to preserve the structure of the input image while emulating the appearance of the unseen domain, which we refer to as the content loss problem. This is particularly severe when the poses of the objects in the input and example images are very different. To address the issue, we propose a new few-shot image translation model, COCO-FUNIT, which computes the style embedding of the example images conditioned on the input image and a new module called the constant style bias. Through extensive experimental validations with comparison to the state-of-the-art, our model shows effectiveness in addressing the content loss problem. For code and pretrained models, please check out https://nvlabs.github.io/COCO-FUNIT/ .
star
aek
ploy
149) [2021] Closed-Form Factorization of Latent Semantics in GANs
Closed-Form Factorization of Latent Semantics in GANs
Yujun ShenBolei Zhou
A rich set of interpretable dimensions has been shown to emerge in the latent space of the Generative Adversarial Networks (GANs) trained for synthesizing images. In order to identify such latent dimensions for image editing, previous methods typically annotate a collection of synthesized samples and train linear classifiers in the latent space. However, they require a clear definition of the target attribute as well as the corresponding manual annotations, limiting their applications in practice. In this work, we examine the internal representation learned by GANs to reveal the underlying variation factors in an unsupervised manner. In particular, we take a closer look into the generation mechanism of GANs and further propose a closed-form factorization algorithm for latent semantic discovery by directly decomposing the pre-trained weights. With a lightning-fast implementation, our approach is capable of not only finding semantically meaningful dimensions comparably to the state-of-the-art supervised methods, but also resulting in far more versatile concepts across multiple GAN models trained on a wide range of datasets.
moke
aek
148) [2021] Fast and Explicit Neural View Synthesis
Fast and Explicit Neural View Synthesis
Pengsheng GuoMiguel Angel BautistaAlex ColburnLiang YangDaniel UlbrichtJoshua M. SusskindQi Shan
We study the problem of novel view synthesis of a scene comprised of 3D objects. We propose a simple yet effective approach that is neither continuous nor implicit, challenging recent trends on view synthesis. We demonstrate that although continuous radiance field representations have gained a lot of attention due to their expressive power, our simple approach obtains comparable or even better novel view reconstruction quality comparing with state-of-the-art baselines while increasing rendering speed by over 400x. Our model is trained in a category-agnostic manner and does not require scene-specific optimization. Therefore, it is able to generalize novel view synthesis to object categories not seen during training. In addition, we show that with our simple formulation, we can use view synthesis as a self-supervision signal for efficient learning of 3D geometry without explicit 3D supervision.
aek
pure
147) [2013] Area under the Precision-Recall Curve: Point Estimates and Confidence Intervals
Area under the Precision-Recall Curve: Point Estimates and Confidence Intervals
Kendrick BoydKevin H. EngC. David Page
The area under the precision-recall curve (AUCPR) is a single number summary of the information in the precision-recall (PR) curve. Similar to the receiver operating characteristic curve, the PR curve has its own unique properties that make estimating its enclosed area challenging. Besides a point estimate of the area, an interval estimate is often required to express magnitude and uncertainty. In this paper we perform a computational analysis of common AUCPR estimators and their confidence intervals. We find both satisfactory estimates and invalid procedures and we recommend two simple intervals that are robust to a variety of assumptions.
wit

Tuesday 20 July 2021

146) [2018] Which Training Methods for GANs do actually Converge?
Which Training Methods for GANs do actually Converge?
Lars MeschederAndreas GeigerSebastian Nowozin
Recent work has shown local convergence of GAN training for absolutely continuous data and generator distributions. In this paper, we show that the requirement of absolute continuity is necessary: we describe a simple yet prototypical counterexample showing that in the more realistic case of distributions that are not absolutely continuous, unregularized GAN training is not always convergent. Furthermore, we discuss regularization strategies that were recently proposed to stabilize GAN training. Our analysis shows that GAN training with instance noise or zero-centered gradient penalties converges. On the other hand, we show that Wasserstein-GANs and WGAN-GP with a finite number of discriminator updates per generator update do not always converge to the equilibrium point. We discuss these results, leading us to a new explanation for the stability problems of GAN training. Based on our analysis, we extend our convergence results to more general GANs and prove local convergence for simplified gradient penalties even if the generator and data distribution lie on lower dimensional manifolds. We find these penalties to work well in practice and use them to learn high-resolution generative image models for a variety of datasets with little hyperparameter tuning.
star
ta
145) [2018] Gradient descent GAN optimization is locally stable
Gradient descent GAN optimization is locally stable
Vaishnavh NagarajanJ. Zico Kolter
Despite the growing prominence of generative adversarial networks (GANs), optimization in GANs is still a poorly understood topic. In this paper, we analyze the "gradient descent" form of GAN optimization i.e., the natural setting where we simultaneously take small gradient steps in both generator and discriminator parameters. We show that even though GAN optimization does not correspond to a convex-concave game (even for simple parameterizations), under proper conditions, equilibrium points of this optimization procedure are still \emph{locally asymptotically stable} for the traditional GAN formulation. On the other hand, we show that the recently proposed Wasserstein GAN can have non-convergent limit cycles near equilibrium. Motivated by this stability analysis, we propose an additional regularization term for gradient descent GAN updates, which \emph{is} able to guarantee local stability for both the WGAN and the traditional GAN, and also shows practical promise in speeding up convergence and addressing mode collapse.
ta
144) [2017] Towards Principled Methods for Training Generative Adversarial Networks
Towards Principled Methods for Training Generative Adversarial Networks
Martin ArjovskyLéon Bottou
The goal of this paper is not to introduce a single algorithm or method, but to make theoretical steps towards fully understanding the training dynamics of generative adversarial networks. In order to substantiate our theoretical analysis, we perform targeted experiments to verify our assumptions, illustrate our claims, and quantify the phenomena. This paper is divided into three sections. The first section introduces the problem at hand. The second section is dedicated to studying and proving rigorously the problems including instability and saturation that arize when training generative adversarial networks. The third section examines a practical and theoretically grounded direction towards solving these problems, while introducing new tools to study them.
ta

Monday 19 July 2021

143) [2019] Learning an Effective Equivariant 3D Descriptor Without Supervision
Learning an Effective Equivariant 3D Descriptor Without Supervision
Riccardo SpezialettiSamuele SaltiLuigi Di Stefano
Establishing correspondences between 3D shapes is a fundamental task in 3D Computer Vision, typically addressed by matching local descriptors. Recently, a few attempts at applying the deep learning paradigm to the task have shown promising results. Yet, the only explored way to learn rotation invariant descriptors has been to feed neural networks with highly engineered and invariant representations provided by existing hand-crafted descriptors, a path that goes in the opposite direction of end-to-end learning from raw data so successfully deployed for 2D images. In this paper, we explore the benefits of taking a step back in the direction of end-to-end learning of 3D descriptors by disentangling the creation of a robust and distinctive rotation equivariant representation, which can be learned from unoriented input data, and the definition of a good canonical orientation, required only at test time to obtain an invariant descriptor. To this end, we leverage two recent innovations: spherical convolutional neural networks to learn an equivariant descriptor and plane folding decoders to learn without supervision. The effectiveness of the proposed approach is experimentally validated by outperforming hand-crafted and learned descriptors on a standard benchmark.
aek
142) [2020] The DeepFake Detection Challenge (DFDC) Dataset
The DeepFake Detection Challenge (DFDC) Dataset
Brian DolhanskyJoanna BittonBen PflaumJikuo LuRuss HowesMenglin WangCristian Canton Ferrer
Deepfakes are a recent off-the-shelf manipulation technique that allows anyone to swap two identities in a single video. In addition to Deepfakes, a variety of GAN-based face swapping methods have also been published with accompanying code. To counter this emerging threat, we have constructed an extremely large face swap video dataset to enable the training of detection models, and organized the accompanying DeepFake Detection Challenge (DFDC) Kaggle competition. Importantly, all recorded subjects agreed to participate in and have their likenesses modified during the construction of the face-swapped dataset. The DFDC dataset is by far the largest currently and publicly available face swap video dataset, with over 100,000 total clips sourced from 3,426 paid actors, produced with several Deepfake, GAN-based, and non-learned methods. In addition to describing the methods used to construct the dataset, we provide a detailed analysis of the top submissions from the Kaggle contest. We show although Deepfake detection is extremely difficult and still an unsolved problem, a Deepfake detection model trained only on the DFDC can generalize to real "in-the-wild" Deepfake videos, and such a model can be a valuable analysis tool when analyzing potentially Deepfaked videos. Training, validation and testing corpuses can be downloaded from https://ai.facebook.com/datasets/dfdc.
nick

Sunday 18 July 2021

141) [2018] HydraNets: Specialized Dynamic Architectures for Efficient Inference
HydraNets: Specialized Dynamic Architectures for Efficient Inference
Noam ShazeerKayvon FatahalianWilliam R. MarkRavi Teja Mullapudi
There is growing interest in improving the design of deep network architectures to be both accurate and low cost. This paper explores semantic specialization as a mechanism for improving the computational efficiency (accuracy-per-unit-cost) of inference in the context of image classification. Specifically, we propose a network architecture template called HydraNet, which enables state-of-the-art architectures for image classification to be transformed into dynamic architectures which exploit conditional execution for efficient inference. HydraNets are wide networks containing distinct components specialized to compute features for visually similar classes, but they retain efficiency by dynamically selecting only a small number of components to evaluate for any one input image. This design is made possible by a soft gating mechanism that encourages component specialization during training and accurately performs component selection during inference. We evaluate the HydraNet approach on both the CIFAR-100 and ImageNet classification tasks. On CIFAR, applying the HydraNet template to the ResNet and DenseNet family of models reduces inference cost by 2-4Ã- while retaining the accuracy of the baseline architectures. On ImageNet, applying the HydraNet template improves accuracy up to 2.5% when compared to an efficient baseline architecture with similar inference cost.
nick
140) [2021] The 3D Neural Network for Improving Radar-Rainfall Estimation in Monsoon Climate
The 3D Neural Network for Improving Radar-Rainfall Estimation in Monsoon Climate
Nurulhani RoslanMohd Nadzri Md RebaSyarawi M. H. SharoniMohammad Shawkat Hossain
The reflectivity (Z)—rain rate (R) model has not been tested on single polarization radar for estimating monsoon rainfall in Southeast Asia, despite its widespread use for estimating heterogeneous rainfall. The artificial neural network (ANN) regression has been applied to the radar reflectivity data to estimate monsoon rainfall using parametric Z-R models. The 10-min reflectivity data recorded in Kota Bahru radar station (in Malaysia) and hourly rain record in nearby 58 gauge stations during 2013–2015 were used. The three-dimensional nearest neighbor interpolation with altitude correction was applied for pixel matching. The non-linear Levenberg Marquardt (LM) regression, integrated with ANN regression minimized the spatiotemporal variability of the proposed Z-R model. Results showed an improvement in the statistical indicator, when LM and ANN overestimated (6.6%) and underestimated (4.4%), respectively, the mean total rainfall. For all rainfall categories, the ANN model has a positive efficiency ratio of >0.2.
nick
139) [2021] CNN-based estimation of heading direction of vehicle using automotive radar sensor
CNN-based estimation of heading direction of vehicle using automotive radar sensor
Sohee LimJaehoon JungByeong-ho LeeSeong-Cheol KimSeongwook Lee
Modern autonomous vehicles are being equipped with various automotive sensors to perform special functions. Especially, it is important to predict the heading direction of the front vehicle to adjust the speed of the ego-vehicle and select appropriate actions. Here, we propose a method for estimating the instantaneous heading direction of a vehicle using automotive radar sensor data. First, using a frequency-modulated continuous wave (FMCW) radar in the 77 GHz band, we accumulate the automotive radar sensor data for different movements of the front vehicle (e.g., stop, going ahead, reversing, turning left, and turning right). To distinguish the different movements of the vehicle, we use the convolutional neural network (CNN) and train it using the acquired radar sensor data. Because the CNN algorithm usually uses image data as input, it is essential to convert radar sensor data into image data. Therefore, we apply a high-resolution angle estimation algorithm to the obtained radar data and convert it into a two-dimensional range map. After the CNN model is trained with the obtained radar sensor data, various movements of the front vehicle can be classified with over 94% of accuracy.
nick
138) [2021] Air-Writing with Sparse Network of Radars using Spatio-Temporal Learning
Air-Writing with Sparse Network of Radars using Spatio-Temporal Learning
Muhammad ArsalanAvik SantraKay BierzynskiVadim Issakov
Hand gesture and motion sensing offer an intuitive and natural form of human-machine interface. Air-writing systems allow users to draw alpha-numerical or linguistic characters in the virtual board in air through hand gestures. Traditionally, radar-based air-writing systems have been based on a network of radars, at least three, to localize the hand target through trilateration algorithm followed by tracking to extract the drawn trajectory, which is then followed by recognition of the drawn character by either Long-Short Term Memory (LSTM) utilizing the sensed trajectory or Deep Convolutional Neural Network (DCNN) utilizing a reconstructed 2D image from the trajectory. However, the practical deployments of such systems are limited since the detection of the finger or hand target by all three radars cannot be guaranteed leading to failure of the trilateration algorithm. Further placement of three or more radars for the air-writing solution is neither always physically plausible nor cost-effective. Furthermore, these solutions do not exploit the full potentials of deep neural networks, which are generally capable of learning features implicitly. In this paper, we propose an air-writing system based on a network of sparse radars, i.e. strictly less than three, using 1D DCNN-LSTM-1D transposed DCNN architecture to reconstruct and classify the drawn character utilizing only the range information from each radar. The paper employs real data using one and two 60 GHz milli-meter wave radar sensors to demonstrate the success of the proposed air-writing solution.
nick
137) [2016] Decimeter-level localization with a single WiFi access point
Decimeter-level localization with a single WiFi access point
Deepak VasishtSwarun KumarDina Katabi
We present Chronos, a system that enables a single WiFi access point to localize clients to within tens of centimeters. Such a system can bring indoor positioning to homes and small businesses which typically have a single access point. The key enabler underlying Chronos is a novel algorithm that can compute sub-nanosecond time-of-flight using commodity WiFi cards. By multiplying the time-of-flight with the speed of light, a MIMO access point computes the distance between each of its antennas and the client, hence localizing it. Our implementation on commodity WiFi cards demonstrates that Chronos's accuracy is comparable to state-of-the-art localization systems, which use four or five access points.
nick
136) [2015] Multi-person localization via RF body reflections
Multi-person localization via RF body reflections
Fadel AdibZachary KabelacDina Katabi
We have recently witnessed the emergence of RF-based indoor localization systems that can track user motion without requiring the user to hold or wear any device. These systems can localize a user and track his gestures by relying solely on the reflections of wireless signals off his body, and work even if the user is behind a wall or obstruction. However, in order for these systems to become practical, they need to address two main challenges: 1) They need to be able to operate in the presence of more than one user in the environment, and 2) they must be able to localize a user without requiring him to move or change his position. This paper presents WiTrack2.0, a multi-person localization system that operates in multipath-rich indoor environments and pinpoints users' locations based purely on the reflections of wireless signals off their bodies. WiTrack2.0 can even localize static users, and does so by sensing the minute movements due to their breathing. We built a prototype of WiTrack2.0 and evaluated it in a standard office building. Our results show that it can localize up to five people simultaneously with a median accuracy of 11.7 cm in each of the x/y dimensions. Furthermore, WiTrack2.0 provides coarse tracking of body parts, identifying the direction of a pointing hand with a median error of 12.5°, for multiple users in the environment.
nick
135) [2014] 3D Tracking via Body Radio Reflections
3D Tracking via Body Radio Reflections
Fadel AdibZach KabelacDina KatabiRobert C. Miller
nick
134) [2020] Constraining dense hand surface tracking with elasticity
Constraining dense hand surface tracking with elasticity
Breannan SmithChenglei WuHe WenPatrick PeluseYaser SheikhJessica K. HodginsTakaaki Shiratori
seminar
wit
133) [2020] Deep White-Balance Editing
Deep White-Balance Editing
Mahmoud AfifiMichael S. Brown
We introduce a deep learning approach to realistically edit an sRGB image’s white balance. Cameras capture sensor images that are rendered by their integrated signal processor (ISP) to a standard RGB (sRGB) color space encoding. The ISP rendering begins with a white-balance procedure that is used to remove the color cast of the scene’s illumination. The ISP then applies a series of nonlinear color manipulations to enhance the visual quality of the final sRGB image. Recent work by [3] showed that sRGB images that were rendered with the incorrect white balance cannot be easily corrected due to the ISP’s nonlinear rendering. The work in [3] proposed a k-nearest neighbor (KNN) solution based on tens of thousands of image pairs. We propose to solve this problem with a deep neural network (DNN) architecture trained in an end-to-end manner to learn the correct white balance. Our DNN maps an input image to two additional white-balance settings corresponding to indoor and outdoor illuminations. Our solution not only is more accurate than the KNN approach in terms of correcting a wrong white-balance setting but also provides the user the freedom to edit the white balance in the sRGB image to other illumination settings.
seminar
wit
132) [1989] A critical investigation of recall and precision as measures of retrieval system performance
A critical investigation of recall and precision as measures of retrieval system performance
Vijay RaghavanPeter BollmannGwang S. Jung
Recall and precision are often used to evaluate the effectiveness of information retrieval systems. They are easy to define if there is a single query and if the retrieval result generated for the query is a linear ordering. However, when the retrieval results are weakly ordered, in the sense that several documents have an identical retrieval status value with respect to a query, some probabilistic notion of precision has to be introduced. Relevance probability, expected precision, and so forth, are some alternatives mentioned in the literature for this purpose. Furthermore, when many queries are to be evaluated and the retrieval results averaged over these queries, some method of interpolation of precision values at certain preselected recall levels is needed. The currently popular approaches for handling both a weak ordering and interpolation are found to be inconsistent, and the results obtained are not easy to interpret. Moreover, in cases where some alternatives are available, no comparative analysis that would facilitate the selection of a particular strategy has been provided. In this paper, we systematically investigate the various problems and issues associated with the use of recall and precision as measures of retrieval system performance. Our motivation is to provide a comparative analysis of methods available for defining precision in a probabilistic sense and to promote a better understanding of the various issues involved in retrieval performance evaluation.
wit
131) [2015] The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets
The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets
Takaya SaitoMarc Rehmsmeier
wit
130) [2006] The relationship between Precision-Recall and ROC curves
The relationship between Precision-Recall and ROC curves
Jesse DavisMark Goadrich
wit

Friday 16 July 2021

129) [2020] Coherent Reconstruction of Multiple Humans from a Single Image
Coherent Reconstruction of Multiple Humans from a Single Image
Wen JiangNikos KolotourosGeorgios PavlakosXiaowei ZhouKostas Daniilidis
In this work, we address the problem of multi-person 3D pose estimation from a single image. A typical regression approach in the top-down setting of this problem would first detect all humans and then reconstruct each one of them independently. However, this type of prediction suffers from incoherent results, e.g., interpenetration and inconsistent depth ordering between the people in the scene. Our goal is to train a single network that learns to avoid these problems and generate a coherent 3D reconstruction of all the humans in the scene. To this end, a key design choice is the incorporation of the SMPL parametric body model in our top-down framework, which enables the use of two novel losses. First, a distance field-based collision loss penalizes interpenetration among the reconstructed people. Second, a depth ordering-aware loss reasons about occlusions and promotes a depth ordering of people that leads to a rendering which is consistent with the annotated instance segmentation. This provides depth supervision signals to the network, even if the image has no explicit 3D annotations. The experiments show that our approach outperforms previous methods on standard 3D pose benchmarks, while our proposed losses enable more coherent reconstruction in natural images. The project website with videos, results, and code can be found at: https://jiangwenpl.github.io/multiperson
mint
128) [2018] Dissecting Person Re-identification from the Viewpoint of Viewpoint
Dissecting Person Re-identification from the Viewpoint of Viewpoint
Xiaoxiao SunLiang Zheng
Variations in visual factors such as viewpoint, pose, illumination and background, are usually viewed as important challenges in person re-identification (re-ID). In spite of acknowledging these factors to be influential, quantitative studies on how they affect a re-ID system are still lacking. To derive insights in this scientific campaign, this paper makes an early attempt in studying a particular factor, viewpoint. We narrow the viewpoint problem down to the pedestrian rotation angle to obtain focused conclusions. In this regard, this paper makes two contributions to the community. First, we introduce a large-scale synthetic data engine, PersonX. Composed of hand-crafted 3D person models, the salient characteristic of this engine is "controllable". That is, we are able to synthesize pedestrians by setting the visual variables to arbitrary values. Second, on the 3D data engine, we quantitatively analyze the influence of pedestrian rotation angle on re-ID accuracy. Comprehensively, the person rotation angles are precisely customized from 0 to 360, allowing us to investigate its effect on the training, query, and gallery sets. Extensive experiment helps us have a deeper understanding of the fundamental problems in person re-ID. Our research also provides useful insights for dataset building and future practical usage, e.g., a person of a side view makes a better query.
ness

Thursday 15 July 2021

127) [2021] Trajectory Diversity for Zero-Shot Coordination
Trajectory Diversity for Zero-Shot Coordination
Andrei LupuBrandon CuiHengyuan HuJakob Foerster
We study the problem of zero-shot coordination (ZSC), where agents must independently produce strategies for a collaborative game that are compatible with novel partners not seen during training. O...
star
tan
126) [2021] Learning Neural Network Subspaces
Learning Neural Network Subspaces
Mitchell WortsmanMaxwell HortonCarlos GuestrinAli FarhadiMohammad Rastegari
Recent observations have advanced our understanding of the neural network optimization landscape, revealing the existence of (1) paths of high accuracy containing diverse solutions and (2) wider minima offering improved performance. Previous methods observing diverse paths require multiple training runs. In contrast we aim to leverage both property (1) and (2) with a single method and in a single training run. With a similar computational cost as training one model, we learn lines, curves, and simplexes of high-accuracy neural networks. These neural network subspaces contain diverse solutions that can be ensembled, approaching the ensemble performance of independently trained networks without the training cost. Moreover, using the subspace midpoint boosts accuracy, calibration, and robustness to label noise, outperforming Stochastic Weight Averaging.
tan

Wednesday 14 July 2021

125) [2021] FlipReID: Closing the Gap between Training and Inference in Person Re-Identification
FlipReID: Closing the Gap between Training and Inference in Person Re-Identification
Xingyang NiEsa Rahtu
Since neural networks are data-hungry, incorporating data augmentation in training is a widely adopted technique that enlarges datasets and improves generalization. On the other hand, aggregating predictions of multiple augmented samples (i.e., test-time augmentation) could boost performance even further. In the context of person re-identification models, it is common practice to extract embeddings for both the original images and their horizontally flipped variants. The final representation is the mean of the aforementioned feature vectors. However, such scheme results in a gap between training and inference, i.e., the mean feature vectors calculated in inference are not part of the training pipeline. In this study, we devise the FlipReID structure with the flipping loss to address this issue. More specifically, models using the FlipReID structure are trained on the original images and the flipped images simultaneously, and incorporating the flipping loss minimizes the mean squared error between feature vectors of corresponding image pairs. Extensive experiments show that our method brings consistent improvements. In particular, we set a new record for MSMT17 which is the largest person re-identification dataset. The source code is available at https://github.com/nixingyang/FlipReID.
ness
124) [2017] Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset
Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset
Joao CarreiraAndrew Zisserman
The paucity of videos in current action classification datasets (UCF-101 and HMDB-51) has made it difficult to identify good video architectures, as most methods obtain similar performance on existing small-scale benchmarks. This paper re-evaluates state-of-the-art architectures in light of the new Kinetics Human Action Video dataset. Kinetics has two orders of magnitude more data, with 400 human action classes and over 400 clips per class, and is collected from realistic, challenging YouTube videos. We provide an analysis on how current architectures fare on the task of action classification on this dataset and how much performance improves on the smaller benchmark datasets after pre-training on Kinetics. We also introduce a new Two-Stream Inflated 3D ConvNet (I3D) that is based on 2D ConvNet inflation: filters and pooling kernels of very deep image classification ConvNets are expanded into 3D, making it possible to learn seamless spatio-temporal feature extractors from video while leveraging successful ImageNet architecture designs and even their parameters. We show that, after pre-training on Kinetics, I3D models considerably improve upon the state-of-the-art in action classification, reaching 80.9% on HMDB-51 and 98.0% on UCF-101.
ness
123) [2017] Non-local Neural Networks
Non-local Neural Networks
Xiaolong WangRoss GirshickAbhinav GuptaKaiming He
Both convolutional and recurrent operations are building blocks that process one local neighborhood at a time. In this paper, we present non-local operations as a generic family of building blocks for capturing long-range dependencies. Inspired by the classical non-local means method in computer vision, our non-local operation computes the response at a position as a weighted sum of the features at all positions. This building block can be plugged into many computer vision architectures. On the task of video classification, even without any bells and whistles, our non-local models can compete or outperform current competition winners on both Kinetics and Charades datasets. In static image recognition, our non-local models improve object detection/segmentation and pose estimation on the COCO suite of tasks. Code is available at https://github.com/facebookresearch/video-nonlocal-net .
ness
122) [2021] Video-based Person Re-identification without Bells and Whistles
Video-based Person Re-identification without Bells and Whistles
Chih-Ting LiuJun-Cheng ChenChu-Song ChenShao-Yi Chien
Video-based person re-identification (Re-ID) aims at matching the video tracklets with cropped video frames for identifying the pedestrians under different cameras. However, there exists severe spatial and temporal misalignment for those cropped tracklets due to the imperfect detection and tracking results generated with obsolete methods. To address this issue, we present a simple re-Detect and Link (DL) module which can effectively reduce those unexpected noise through applying the deep learning-based detection and tracking on the cropped tracklets. Furthermore, we introduce an improved model called Coarse-to-Fine Axial-Attention Network (CF-AAN). Based on the typical Non-local Network, we replace the non-local module with three 1-D position-sensitive axial attentions, in addition to our proposed coarse-to-fine structure. With the developed CF-AAN, compared to the original non-local operation, we can not only significantly reduce the computation cost but also obtain the state-of-the-art performance (91.3% in rank-1 and 86.5% in mAP) on the large-scale MARS dataset. Meanwhile, by simply adopting our DL module for data alignment, to our surprise, several baseline models can achieve better or comparable results with the current state-of-the-arts. Besides, we discover the errors not only for the identity labels of tracklets but also for the evaluation protocol for the test data of MARS. We hope that our work can help the community for the further development of invariant representation without the hassle of the spatial and temporal alignment and dataset noise. The code, corrected labels, evaluation protocol, and the aligned data will be available at https://github.com/jackie840129/CF-AAN.
ness
121) [2021] LiveView: Dynamic Target-Centered MPI for View Synthesis
LiveView: Dynamic Target-Centered MPI for View Synthesis
Sushobhan GhoshZhaoyang LvNathan MatsudaLei XiaoAndrew BerkovichOliver Cossairt
Existing Multi-Plane Image (MPI) based view-synthesis methods generate an MPI aligned with the input view using a fixed number of planes in one forward pass. These methods produce fast, high-quality rendering of novel views, but rely on slow and computationally expensive MPI generation methods unsuitable for real-time applications. In addition, most MPI techniques use fixed depth/disparity planes which cannot be modified once the training is complete, hence offering very little flexibility at run-time. We propose LiveView - a novel MPI generation and rendering technique that produces high-quality view synthesis in real-time. Our method can also offer the flexibility to select scene-dependent MPI planes (number of planes and spacing between them) at run-time. LiveView first warps input images to target view (target-centered) and then learns to generate a target view centered MPI, one depth plane at a time (dynamically). The method generates high-quality renderings, while also enabling fast MPI generation and novel view synthesis. As a result, LiveView enables real-time view synthesis applications where an MPI needs to be updated frequently based on a video stream of input views. We demonstrate that LiveView improves the quality of view synthesis while being 70 times faster at run-time compared to state-of-the-art MPI-based methods.
teng

Tuesday 13 July 2021

120) [2021] Can You Learn an Algorithm? Generalizing from Easy to Hard Problems with Recurrent Networks
Can You Learn an Algorithm? Generalizing from Easy to Hard Problems with Recurrent Networks
Avi SchwarzschildEitan BorgniaArjun GuptaFurong HuangUzi VishkinMicah GoldblumTom Goldstein
Deep neural networks are powerful machines for visual pattern recognition, but reasoning tasks that are easy for humans may still be difficult for neural models. Humans possess the ability to extrapolate reasoning strategies learned on simple problems to solve harder examples, often by thinking for longer. For example, a person who has learned to solve small mazes can easily extend the very same search techniques to solve much larger mazes by spending more time. In computers, this behavior is often achieved through the use of algorithms, which scale to arbitrarily hard problem instances at the cost of more computation. In contrast, the sequential computing budget of feed-forward neural networks is limited by their depth, and networks trained on simple problems have no way of extending their reasoning to accommodate harder problems. In this work, we show that recurrent networks trained to solve simple problems with few recurrent steps can indeed solve much more complex problems simply by performing additional recurrences during inference. We demonstrate this algorithmic behavior of recurrent networks on prefix sum computation, mazes, and chess. In all three domains, networks trained on simple problem instances are able to extend their reasoning abilities at test time simply by "thinking for longer."
moke
119) [2021] ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-Inertial and Multi-Map SLAM
ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-Inertial and Multi-Map SLAM
Carlos CamposRichard ElviraJuan J. Gómez RodríguezJosé M. M. MontielJuan D. Tardós
This paper presents ORB-SLAM3, the first system able to perform visual, visual-inertial and multi-map SLAM with monocular, stereo and RGB-D cameras, using pin-hole and fisheye lens models. The first main novelty is a feature-based tightly-integrated visual-inertial SLAM system that fully relies on Maximum-a-Posteriori (MAP) estimation, even during the IMU initialization phase. The result is a system that operates robustly in real-time, in small and large, indoor and outdoor environments, and is 2 to 5 times more accurate than previous approaches. The second main novelty is a multiple map system that relies on a new place recognition method with improved recall. Thanks to it, ORB-SLAM3 is able to survive to long periods of poor visual information: when it gets lost, it starts a new map that will be seamlessly merged with previous maps when revisiting mapped areas. Compared with visual odometry systems that only use information from the last few seconds, ORB-SLAM3 is the first system able to reuse in all the algorithm stages all previous information. This allows to include in bundle adjustment co-visible keyframes, that provide high parallax observations boosting accuracy, even if they are widely separated in time or if they come from a previous mapping session. Our experiments show that, in all sensor configurations, ORB-SLAM3 is as robust as the best systems available in the literature, and significantly more accurate. Notably, our stereo-inertial SLAM achieves an average accuracy of 3.6 cm on the EuRoC drone and 9 mm under quick hand-held motions in the room of TUM-VI dataset, a setting representative of AR/VR scenarios. For the benefit of the community we make public the source code.
nick
118) [2019] First Order Motion Model for Image Animation
First Order Motion Model for Image Animation
Aliaksandr SiarohinStéphane LathuilièreSergey TulyakovElisa RicciNicu Sebe
Image animation consists of generating a video sequence so that an object in a source image is animated according to the motion of a driving video. Our framework addresses this problem without using any annotation or prior information about the specific object to animate. Once trained on a set of videos depicting objects of the same category (e.g. faces, human bodies), our method can be applied to any object of this class. To achieve this, we decouple appearance and motion information using a self-supervised formulation. To support complex motions, we use a representation consisting of a set of learned keypoints along with their local affine transformations. A generator network models occlusions arising during target motions and combines the appearance extracted from the source image and the motion derived from the driving video. Our framework scores best on diverse benchmarks and on a variety of object categories. Our source code is publicly available1.
aek
seminar
117) [2021] Motion Representations for Articulated Animation
Motion Representations for Articulated Animation
Aliaksandr SiarohinOliver J. WoodfordJian RenMenglei ChaiSergey Tulyakov
We propose novel motion representations for animating articulated objects consisting of distinct parts. In a completely unsupervised manner, our method identifies object parts, tracks them in a driving video, and infers their motions by considering their principal axes. In contrast to the previous keypoint-based works, our method extracts meaningful and consistent regions, describing locations, shape, and pose. The regions correspond to semantically relevant and distinct object parts, that are more easily detected in frames of the driving video. To force decoupling of foreground from background, we model non-object related global motion with an additional affine transformation. To facilitate animation and prevent the leakage of the shape of the driving object, we disentangle shape and pose of objects in the region space. Our model can animate a variety of objects, surpassing previous methods by a large margin on existing benchmarks. We present a challenging new benchmark with high-resolution videos and show that the improvement is particularly pronounced when articulated objects are considered, reaching 96.6% user preference vs. the state of the art.
aek

Monday 12 July 2021

116) (16) (PDF) Shape-from-Silhouette using Visual Hull and Deep Image Prior
(16) (PDF) Shape-from-Silhouette using Visual Hull and Deep Image Prior
ResearchGate is a network dedicated to science and research. Connect, collaborate and discover scientific publications, jobs and conferences. All for free.
pure
115) [2021] Depth-supervised NeRF: Fewer Views and Faster Training for Free
Depth-supervised NeRF: Fewer Views and Faster Training for Free
Kangle DengAndrew LiuJun-Yan ZhuDeva Ramanan
One common failure mode of Neural Radiance Field (NeRF) models is fitting incorrect geometries when given an insufficient number of input views. We propose DS-NeRF (Depth-supervised Neural Radiance Fields), a loss for learning neural radiance fields that takes advantage of readily-available depth supervision. Our key insight is that sparse depth supervision can be used to regularize the learned geometry, a crucial component for effectively rendering novel views using NeRF. We exploit the fact that current NeRF pipelines require images with known camera poses that are typically estimated by running structure-from-motion (SFM). Crucially, SFM also produces sparse 3D points that can be used as ``free" depth supervision during training: we simply add a loss to ensure that depth rendered along rays that intersect these 3D points is close to the observed depth. We find that DS-NeRF can render more accurate images given fewer training views while training 2-6x faster. With only two training views on real-world images, DS-NeRF significantly outperforms NeRF as well as other sparse-view variants. We show that our loss is compatible with these NeRF models, demonstrating that depth is a cheap and easily digestible supervisory signal. Finally, we show that DS-NeRF supports other types of depth supervision such as scanned depth sensors and RGBD reconstruction outputs.
aek
pure
teng
114) [2020] Exploring Simple Siamese Representation Learning
Exploring Simple Siamese Representation Learning
Xinlei ChenKaiming He
Siamese networks have become a common structure in various recent models for unsupervised visual representation learning. These models maximize the similarity between two augmentations of one image, subject to certain conditions for avoiding collapsing solutions. In this paper, we report surprising empirical results that simple Siamese networks can learn meaningful representations even using none of the following: (i) negative sample pairs, (ii) large batches, (iii) momentum encoders. Our experiments show that collapsing solutions do exist for the loss and structure, but a stop-gradient operation plays an essential role in preventing collapsing. We provide a hypothesis on the implication of stop-gradient, and further show proof-of-concept experiments verifying it. Our "SimSiam" method achieves competitive results on ImageNet and downstream tasks. We hope this simple baseline will motivate people to rethink the roles of Siamese architectures for unsupervised representation learning. Code will be made available.
moke
seminar
ta
113) [2018] Exploration by Random Network Distillation
Exploration by Random Network Distillation
Yuri BurdaHarrison EdwardsAmos StorkeyOleg Klimov
We introduce an exploration bonus for deep reinforcement learning methods that is easy to implement and adds minimal overhead to the computation performed. The bonus is the error of a neural network predicting features of the observations given by a fixed randomly initialized neural network. We also introduce a method to flexibly combine intrinsic and extrinsic rewards. We find that the random network distillation (RND) bonus combined with this increased flexibility enables significant progress on several hard exploration Atari games. In particular we establish state of the art performance on Montezuma's Revenge, a game famously difficult for deep reinforcement learning methods. To the best of our knowledge, this is the first method that achieves better than average human performance on this game without using demonstrations or having access to the underlying state of the game, and occasionally completes the first level.
aek
ta
112) [2018] Simultaneous Localization and Mapping (SLAM) using RTAB-MAP
Simultaneous Localization and Mapping (SLAM) using RTAB-MAP
Sagarnil Das
This paper implements Simultaneous Localization and Mapping (SLAM) technique to construct a map of a given environment. A Real Time Appearance Based Mapping (RTAB-Map) approach was taken for accomplishing this task. Initially, a 2d occupancy grid and 3d octomap was created from a provided simulated environment. Next, a personal simulated environment was created for mapping as well. In this appearance based method, a process called Loop Closure is used to determine whether a robot has seen a location before or not. In this paper, it is seen that RTAB-Map is optimized for large scale and long term SLAM by using multiple strategies to allow for loop closure to be done in real time and the results depict that it can be an excellent solution for SLAM to develop robots that can map an environment in both 2d and 3d.
nick
111) [2021] Structured Denoising Diffusion Models in Discrete State-Spaces
Structured Denoising Diffusion Models in Discrete State-Spaces
Jacob AustinDaniel JohnsonJonathan HoDanny TarlowRianne van den Berg
Denoising diffusion probabilistic models (DDPMs) (Ho et al. 2020) have shown impressive results on image and waveform generation in continuous state spaces. Here, we introduce Discrete Denoising Diffusion Probabilistic Models (D3PMs), diffusion-like generative models for discrete data that generalize the multinomial diffusion model of Hoogeboom et al. 2021, by going beyond corruption processes with uniform transition probabilities. This includes corruption with transition matrices that mimic Gaussian kernels in continuous space, matrices based on nearest neighbors in embedding space, and matrices that introduce absorbing states. The third allows us to draw a connection between diffusion models and autoregressive and mask-based generative models. We show that the choice of transition matrix is an important design decision that leads to improved results in image and text domains. We also introduce a new loss function that combines the variational lower bound with an auxiliary cross entropy loss. For text, this model class achieves strong results on character-level text generation while scaling to large vocabularies on LM1B. On the image dataset CIFAR-10, our models approach the sample quality and exceed the log-likelihood of the continuous-space DDPM model.
teng
110) [2021] Towards Fast, Accurate and Stable 3D Dense Face Alignment
Towards Fast, Accurate and Stable 3D Dense Face Alignment
Jianzhu GuoXiangyu ZhuYang YangFan YangZhen LeiStan Z. Li
Existing methods of 3D dense face alignment mainly concentrate on accuracy, thus limiting the scope of their practical applications. In this paper, we propose a novel regression framework named 3DDFA-V2 which makes a balance among speed, accuracy and stability. Firstly, on the basis of a lightweight backbone, we propose a meta-joint optimization strategy to dynamically regress a small set of 3DMM parameters, which greatly enhances speed and accuracy simultaneously. To further improve the stability on videos, we present a virtual synthesis method to transform one still image to a short-video which incorporates in-plane and out-of-plane face moving. On the premise of high accuracy and stability, 3DDFA-V2 runs at over 50fps on a single CPU core and outperforms other state-of-the-art heavy models simultaneously. Experiments on several challenging datasets validate the efficiency of our method. Pre-trained models and code are available at https://github.com/cleardusk/3DDFA_V2.
teng

Sunday 11 July 2021

109) [2020] Neural Light Transport for Relighting and View Synthesis
Neural Light Transport for Relighting and View Synthesis
Xiuming ZhangSean FanelloYun-Ta TsaiTiancheng SunTianfan XueRohit PandeySergio Orts-EscolanoPhilip DavidsonChristoph RhemannPaul DebevecJonathan T. BarronRavi RamamoorthiWilliam T. Freeman
The light transport (LT) of a scene describes how it appears under different lighting and viewing directions, and complete knowledge of a scene's LT enables the synthesis of novel views under arbitrary lighting. In this paper, we focus on image-based LT acquisition, primarily for human bodies within a light stage setup. We propose a semi-parametric approach to learn a neural representation of LT that is embedded in the space of a texture atlas of known geometric properties, and model all non-diffuse and global LT as residuals added to a physically-accurate diffuse base rendering. In particular, we show how to fuse previously seen observations of illuminants and views to synthesize a new image of the same scene under a desired lighting condition from a chosen viewpoint. This strategy allows the network to learn complex material effects (such as subsurface scattering) and global illumination, while guaranteeing the physical correctness of the diffuse LT (such as hard shadows). With this learned LT, one can relight the scene photorealistically with a directional light or an HDRI map, synthesize novel views with view-dependent effects, or do both simultaneously, all in a unified framework using a set of sparse, previously seen observations. Qualitative and quantitative experiments demonstrate that our neural LT (NLT) outperforms state-of-the-art solutions for relighting and view synthesis, without separate treatment for both problems that prior work requires.
pure
seminar
108) [2018] Joint 3D Face Reconstruction and Dense Alignment with Position Map Regression Network
Joint 3D Face Reconstruction and Dense Alignment with Position Map Regression Network
Yao FengFan WuXiaohu ShaoYanfeng WangXi Zhou
We propose a straightforward method that simultaneously reconstructs the 3D facial structure and provides dense alignment. To achieve this, we design a 2D representation called UV position map which records the 3D shape of a complete face in UV space, then train a simple Convolutional Neural Network to regress it from a single 2D image. We also integrate a weight mask into the loss function during training to improve the performance of the network. Our method does not rely on any prior face model, and can reconstruct full facial geometry along with semantic meaning. Meanwhile, our network is very light-weighted and spends only 9.8ms to process an image, which is extremely faster than previous works. Experiments on multiple challenging datasets show that our method surpasses other state-of-the-art methods on both reconstruction and alignment tasks by a large margin.
pure
seminar
107) [2021] Shape and Material Capture at Home
Shape and Material Capture at Home
Daniel LichyJiaye WuSoumyadip SenguptaDavid W. Jacobs
In this paper, we present a technique for estimating the geometry and reflectance of objects using only a camera, flashlight, and optionally a tripod. We propose a simple data capture technique in which the user goes around the object, illuminating it with a flashlight and capturing only a few images. Our main technical contribution is the introduction of a recursive neural architecture, which can predict geometry and reflectance at 2^{k}*2^{k} resolution given an input image at 2^{k}*2^{k} and estimated geometry and reflectance from the previous step at 2^{k-1}*2^{k-1}. This recursive architecture, termed RecNet, is trained with 256x256 resolution but can easily operate on 1024x1024 images during inference. We show that our method produces more accurate surface normal and albedo, especially in regions of specular highlights and cast shadows, compared to previous approaches, given three or fewer input images. For the video and code, please visit the project website http://dlichy.github.io/ShapeAndMaterialAtHome/.
pure
seminar

Saturday 10 July 2021

106) [2019] Monocular Neural Image Based Rendering with Continuous View Control
Monocular Neural Image Based Rendering with Continuous View Control
Xu ChenJie SongOtmar Hilliges
We present an approach that learns to synthesize high-quality, novel views of 3D objects or scenes, while providing fine-grained and precise control over the 6-DOF viewpoint. The approach is self-supervised and only requires 2D images and associated view transforms for training. Our main contribution is a network architecture that leverages a transforming auto-encoder in combination with a depth-guided warping procedure to predict geometrically accurate unseen views. Leveraging geometric constraints renders direct supervision via depth or flow maps unnecessary. If large parts of the object are occluded in the source view, a purely learning based prior is used to predict the values for dis-occluded pixels. Our network furthermore predicts a per-pixel mask, used to fuse depth-guided and pixel-based predictions. The resulting images reflect the desired 6-DOF transformation and details are preserved. We thoroughly evaluate our architecture on synthetic and real scenes and under fine-grained and fixed-view settings. Finally, we demonstrate that the approach generalizes to entirely unseen images such as product images downloaded from the internet.
pure
seminar
105) [2021] FaDIV-Syn: Fast Depth-Independent View Synthesis
FaDIV-Syn: Fast Depth-Independent View Synthesis
Andre RochowMax SchwarzMichael WeinmannSven Behnke
We introduce FaDIV-Syn, a fast depth-independent view synthesis method. Our multi-view approach addresses the problem that view synthesis methods are often limited by their depth estimation stage, where incorrect depth predictions can lead to large projection errors. To avoid this issue, we efficiently warp multiple input images into the target frame for a range of assumed depth planes. The resulting tensor representation is fed into a U-Net-like CNN with gated convolutions, which directly produces the novel output view. We therefore side-step explicit depth estimation. This improves efficiency and performance on transparent, reflective, and feature-less scene parts. FaDIV-Syn can handle both interpolation and extrapolation tasks and outperforms state-of-the-art extrapolation methods on the large-scale RealEstate10k dataset. In contrast to comparable methods, it is capable of real-time operation due to its lightweight architecture. We further demonstrate data efficiency of FaDIV-Syn by training from fewer examples as well as its generalization to higher resolutions and arbitrary depth ranges under severe depth discretization.
pure
104) [2021] Recursive-NeRF: An Efficient and Dynamically Growing NeRF
Recursive-NeRF: An Efficient and Dynamically Growing NeRF
Guo-Wei YangWen-Yang ZhouHao-Yang PengDun LiangTai-Jiang MuShi-Min Hu
View synthesis methods using implicit continuous shape representations learned from a set of images, such as the Neural Radiance Field (NeRF) method, have gained increasing attention due to their high quality imagery and scalability to high resolution. However, the heavy computation required by its volumetric approach prevents NeRF from being useful in practice; minutes are taken to render a single image of a few megapixels. Now, an image of a scene can be rendered in a level-of-detail manner, so we posit that a complicated region of the scene should be represented by a large neural network while a small neural network is capable of encoding a simple region, enabling a balance between efficiency and quality. Recursive-NeRF is our embodiment of this idea, providing an efficient and adaptive rendering and training approach for NeRF. The core of Recursive-NeRF learns uncertainties for query coordinates, representing the quality of the predicted color and volumetric intensity at each level. Only query coordinates with high uncertainties are forwarded to the next level to a bigger neural network with a more powerful representational capability. The final rendered image is a composition of results from neural networks of all levels. Our evaluation on three public datasets shows that Recursive-NeRF is more efficient than NeRF while providing state-of-the-art quality. The code will be available at https://github.com/Gword/Recursive-NeRF.
103) [2021] NeRFactor: Neural Factorization of Shape and Reflectance Under an Unknown Illumination
NeRFactor: Neural Factorization of Shape and Reflectance Under an Unknown Illumination
Xiuming ZhangPratul P. SrinivasanBoyang DengPaul DebevecWilliam T. FreemanJonathan T. Barron
We address the problem of recovering the shape and spatially-varying reflectance of an object from posed multi-view images of the object illuminated by one unknown lighting condition. This enables the rendering of novel views of the object under arbitrary environment lighting and editing of the object's material properties. The key to our approach, which we call Neural Radiance Factorization (NeRFactor), is to distill the volumetric geometry of a Neural Radiance Field (NeRF) [Mildenhall et al. 2020] representation of the object into a surface representation and then jointly refine the geometry while solving for the spatially-varying reflectance and the environment lighting. Specifically, NeRFactor recovers 3D neural fields of surface normals, light visibility, albedo, and Bidirectional Reflectance Distribution Functions (BRDFs) without any supervision, using only a re-rendering loss, simple smoothness priors, and a data-driven BRDF prior learned from real-world BRDF measurements. By explicitly modeling light visibility, NeRFactor is able to separate shadows from albedo and synthesize realistic soft or hard shadows under arbitrary lighting conditions. NeRFactor is able to recover convincing 3D models for free-viewpoint relighting in this challenging and underconstrained capture setup for both synthetic and real scenes. Qualitative and quantitative experiments show that NeRFactor outperforms classic and deep learning-based state of the art across various tasks. Our code and data are available at people.csail.mit.edu/xiuming/projects/nerfactor/.
star
aek
102) [2021] Self-Supervised Deep Metric Learning for Pointsets
Self-Supervised Deep Metric Learning for Pointsets
Pattaramanee ArsomngernCheng LongSupasorn SuwajanakornSarana Nutanong
Deep metric learning is a supervised learning paradigm to construct a meaningful vector space to represent complex objects. A successful application of deep metric learning to pointsets means that we can avoid expensive retrieval operations on objects such as documents and can significantly facilitate many machine learning and data mining tasks involving pointsets. We propose a self-supervised deep metric learning solution for pointsets. The novelty of our proposed solution lies in the self-supervision mechanism, which makes use of a distribution distance for set ranking called the Earth’s Mover Distance (EMD) to generate pseudo labels. We conducted experimental studies on four document and four graph datasets. Experimental results show that our proposed methods outperform baselines and stateof-the-art approaches in most settings.
star
aek
ta
wit
101) [2021] Repurposing GANs for One-shot Semantic Part Segmentation
Repurposing GANs for One-shot Semantic Part Segmentation
Nontawat TritrongPitchaporn RewatbowornwongSupasorn Suwajanakorn
While GANs have shown success in realistic image generation, the idea of using GANs for other tasks unrelated to synthesis is underexplored. Do GANs learn meaningful structural parts of objects during their attempt to reproduce those objects? In this work, we test this hypothesis and propose a simple and effective approach based on GANs for semantic part segmentation that requires as few as one label example along with an unlabeled dataset. Our key idea is to leverage a trained GAN to extract pixel-wise representation from the input image and use it as feature vectors for a segmentation network. Our experiments demonstrate that GANs representation is "readily discriminative" and produces surprisingly good results that are comparable to those from supervised baselines trained with significantly more labels. We believe this novel repurposing of GANs underlies a new class of unsupervised representation learning that is applicable to many other tasks. More results are available at https://repurposegans.github.io/.
moke
aek
ploy
som
ta
100) [2019] ViSiL: Fine-Grained Spatio-Temporal Video Similarity Learning
ViSiL: Fine-Grained Spatio-Temporal Video Similarity Learning
Giorgos Kordopatis-ZilosSymeon PapadopoulosIoannis PatrasYiannis Kompatsiaris
In this paper we introduce ViSiL, a Video Similarity Learning architecture that considers fine-grained SpatioTemporal relations between pairs of videos – such relations are typically lost in previous video retrieval approaches that embed the whole frame or even the whole video into a vector descriptor before the similarity estimation. By contrast, our Convolutional Neural Network (CNN)-based approach is trained to calculate video-to-video similarity from refined frame-to-frame similarity matrices, so as to consider both intra- and inter-frame relations. In the proposed method, pairwise frame similarity is estimated by applying Tensor Dot (TD) followed by Chamfer Similarity (CS) on regional CNN frame features - this avoids feature aggregation before the similarity calculation between frames. Subsequently, the similarity matrix between all video frames is fed to a four-layer CNN, and then summarized using Chamfer Similarity (CS) into a video-to-video similarity score – this avoids feature aggregation before the similarity calculation between videos and captures the temporal similarity patterns between matching frame sequences. We train the proposed network using a triplet loss scheme and evaluate it on five public benchmark datasets on four different video retrieval problems where we demonstrate large improvements in comparison to the state of the art. The implementation of ViSiL is publicly available1.
wit
99) [2020] Utility of Deep Learning Features for Facial Attributes Manipulation Detection
Utility of Deep Learning Features for Facial Attributes Manipulation Detection
Zahid AkhtarMurshida Rahman MoureeDipankar Dasgupta
ML-synthesized face samples, frequently called DeepFakes, is a serious issue menacing the integrity of information on the Internet and face recognition systems. One of the main defenses against face manipulations is DeepFakes detection. In this paper, we first created a new DeepFakes dataset using a publicly available MUCT database, which contains diverse set of facial manipulations. In particular, we employed smartphone FaceApp with eleven different filters (i.e., every filter concurs with a different facial manipulation) such as gender conversion, face swapping, tattoo and hair style changes. Deep learning features have recently demonstrated magnificent performances in various real-world applications. Therefore, with collected dataset, we study the efficiency of deep features for identifying the DeepFakes under different scenarios. We performed a rigorous and comparative analysis of a convolutional neural networks (CNNs) model and immensely utilized deep architectures such as VGG16, SqueezNet, DenseNet, ResaNet, and GoogleNet via transfer learning for face manipulation detection. Empirical results show that deep features based DeepFakes detection systems attain notable accuracies when trained and tested on same kind of manipulation. But their performances drop drastically when they encounter with novel manipulation type that was not used during the training stage, thereby having low generalization capability.
wit
98) [2020] Unifying Deep Local and Global Features for Image Search
Unifying Deep Local and Global Features for Image Search
Bingyi CaoAndre AraujoJack Sim
Image retrieval is the problem of searching an image database for items that are similar to a query image. To address this task, two main types of image representations have been studied: global and local image features. In this work, our key contribution is to unify global and local features into a single deep model, enabling accurate retrieval with efficient feature extraction. We refer to the new model as DELG, standing for DEep Local and Global features. We leverage lessons from recent feature learning work and propose a model that combines generalized mean pooling for global features and attentive selection for local features. The entire network can be learned end-to-end by carefully balancing the gradient flow between two heads – requiring only image-level labels. We also introduce an autoencoder-based dimensionality reduction technique for local features, which is integrated into the model, improving training efficiency and matching performance. Comprehensive experiments show that our model achieves state-of-the-art image retrieval on the Revisited Oxford and Paris datasets, and state-of-the-art singlemodel instance-level recognition on the Google Landmarks dataset v2. Code and models are available at https://github.com/tensorflow/models/ tree/master/research/delf.
wit
97) [2020] Recent advances in local feature detector and descriptor: a literature survey
Recent advances in local feature detector and descriptor: a literature survey
Khushbu JoshiManish I. Patel
The computer vision system is the technology that deals with identifying and detecting the objects of a particular class in digital images and videos. Local feature detection and description play an essential role in many computer vision applications like object detection, object classification, etc. The accuracy of these applications depends on the performance of local feature detectors and descriptors used in the methods. Over the past decades, new algorithms and techniques have been introduced with the development of machine learning and deep learning techniques. The machine learning techniques can lead the work to the next level when sufficient data is provided. Deep learning algorithms can handle a large amount of data efficiently. However, this may raise questions in a researcher’s mind about selecting the best algorithm and best method for a particular application to increase the performance. The selection of the algorithms highly depends on the type of application and amount of data to be handled. This encouraged us to write a comprehensive survey of local image feature detectors and descriptors from state-of-the-art to the recent ones. This paper presents feature detection and description methods in the visible band with their advantages and disadvantages. We also gave an overview of current performance evaluations and benchmark datasets. Besides, the methods and algorithms are described to find the features beyond the visible band. Finally, we concluded the survey with future directions. This survey may help researchers and serve as a reference in the field of the computer vision system.
wit
96) [2018] MINE: Mutual Information Neural Estimation
MINE: Mutual Information Neural Estimation
Mohamed Ishmael BelghaziAristide BaratinSai RajeswarSherjil OzairYoshua BengioAaron CourvilleR. Devon Hjelm
We argue that the estimation of mutual information between high dimensional continuous random variables can be achieved by gradient descent over neural networks. We present a Mutual Information Neural Estimator (MINE) that is linearly scalable in dimensionality as well as in sample size, trainable through back-prop, and strongly consistent. We present a handful of applications on which MINE can be used to minimize or maximize mutual information. We apply MINE to improve adversarially trained generative models. We also use MINE to implement the Information Bottleneck, applying it to supervised classification; our results demonstrate substantial improvement in flexibility and performance in these settings.
wit
95) [2020] High‐Resolution Neural Face Swapping for Visual Effects
High‐Resolution Neural Face Swapping for Visual Effects
J. NaruniecL. HelmingerC. SchroersR.M. Weber
In this paper, we propose an algorithm for fully automatic neural face swapping in images and videos. To the best of our knowledge, this is the first method capable of rendering photo-realistic and temporally coherent results at megapixel resolution. To this end, we introduce a progressively trained multi-way comb network and a light- and contrast-preserving blending method. We also show that while progressive training enables generation of high-resolution images, extending the architecture and training data beyond two people allows us to achieve higher fidelity in generated expressions. When compositing the generated expression onto the target face, we show how to adapt the blending strategy to preserve contrast and low-frequency lighting. Finally, we incorporate a refinement strategy into the face landmark stabilization algorithm to achieve temporal stability, which is crucial for working with high-resolution videos. We conduct an extensive ablation study to show the influence of our design choices on the quality of the swap and compare our work with popular state-of-the-art methods.
wit
94) [2018] DeepFakes: a New Threat to Face Recognition? Assessment and Detection
DeepFakes: a New Threat to Face Recognition? Assessment and Detection
Pavel KorshunovSebastien Marcel
It is becoming increasingly easy to automatically replace a face of one person in a video with the face of another person by using a pre-trained generative adversarial network (GAN). Recent public scandals, e.g., the faces of celebrities being swapped onto pornographic videos, call for automated ways to detect these Deepfake videos. To help developing such methods, in this paper, we present the first publicly available set of Deepfake videos generated from videos of VidTIMIT database. We used open source software based on GANs to create the Deepfakes, and we emphasize that training and blending parameters can significantly impact the quality of the resulted videos. To demonstrate this impact, we generated videos with low and high visual quality (320 videos each) using differently tuned parameter sets. We showed that the state of the art face recognition systems based on VGG and Facenet neural networks are vulnerable to Deepfake videos, with 85.62% and 95.00% false acceptance rates (on high quality versions) respectively, which means methods for detecting Deepfake videos are necessary. By considering several baseline approaches, we found that audio-visual approach based on lipsync inconsistency detection was not able to distinguish Deepfake videos. The best performing method, which is based on visual quality metrics and is often used in presentation attack detection domain, resulted in 8.97% equal error rate on high quality Deepfakes. Our experiments demonstrate that GAN-generated Deepfake videos are challenging for both face recognition systems and existing detection methods, and the further development of face swapping technology will make it even more so.
wit
93) [2020] DeepFakes and Beyond: A Survey of Face Manipulation and Fake Detection
DeepFakes and Beyond: A Survey of Face Manipulation and Fake Detection
Ruben TolosanaRuben Vera-RodriguezJulian FierrezAythami MoralesJavier Ortega-Garcia
The free access to large-scale public databases, together with the fast progress of deep learning techniques, in particular Generative Adversarial Networks, have led to the generation of very realistic fake content with its corresponding implications towards society in this era of fake news.
wit
92) [2019] Deep Metric Learning to Rank
Deep Metric Learning to Rank
Fatih CakirKun HeXide XiaBrian KulisStan Sclaroff
We propose a novel deep metric learning method by revisiting the learning to rank approach. Our method, named FastAP, optimizes the rank-based Average Precision measure, using an approximation derived from distance quantization. FastAP has a low complexity compared to existing methods, and is tailored for stochastic gradient descent. To fully exploit the benefits of the ranking formulation, we also propose a new minibatch sampling scheme, as well as a simple heuristic to enable large-batch training. On three few-shot image retrieval datasets, FastAP consistently outperforms competing methods, which often involve complex optimization heuristics or costly model ensembles.
wit
91) [2021] Deep Learning for Deepfakes Creation and Detection: A Survey
Deep Learning for Deepfakes Creation and Detection: A Survey
Thanh Thi NguyenQuoc Viet Hung NguyenCuong M. NguyenDung NguyenDuc Thanh NguyenSaeid Nahavandi
Deep learning has been successfully applied to solve various complex problems ranging from big data analytics to computer vision and human-level control. Deep learning advances however have also been employed to create software that can cause threats to privacy, democracy and national security. One of those deep learning-powered applications recently emerged is deepfake. Deepfake algorithms can create fake images and videos that humans cannot distinguish them from authentic ones. The proposal of technologies that can automatically detect and assess the integrity of digital visual media is therefore indispensable. This paper presents a survey of algorithms used to create deepfakes and, more importantly, methods proposed to detect deepfakes in the literature to date. We present extensive discussions on challenges, research trends and directions related to deepfake technologies. By reviewing the background of deepfakes and state-of-the-art deepfake detection methods, this study provides a comprehensive overview of deepfake techniques and facilitates the development of new and more robust methods to deal with the increasingly challenging deepfakes.
wit
90) [2020] Celeb-DF: A Large-scale Challenging Dataset for DeepFake Forensics
Celeb-DF: A Large-scale Challenging Dataset for DeepFake Forensics
Yuezun LiXin YangPu SunHonggang QiSiwei Lyu
AI-synthesized face-swapping videos, commonly known as DeepFakes, is an emerging problem threatening the trustworthiness of online information. The need to develop and evaluate DeepFake detection algorithms calls for large-scale datasets. However, current DeepFake datasets suffer from low visual quality and do not resemble DeepFake videos circulated on the Internet. We present a new large-scale challenging DeepFake video dataset, CelebDF, which contains 5, 639 high-quality DeepFake videos of celebrities generated using improved synthesis process. We conduct a comprehensive evaluation of DeepFake detection methods and datasets to demonstrate the escalated level of challenges posed by Celeb-DF.
wit
89) [2020] Attention-based convolutional neural network for deep face recognition
Attention-based convolutional neural network for deep face recognition
Hefei LingJiyang WuJunrui HuangJiazhong ChenPing Li
Discriminative feature embedding is of essential importance in the field of large scale face recognition. In this paper, we propose an attention-based convolutional neural network (ACNN) for discriminative face feature embedding, which aims to decrease the information redundancy among channels and focus on the most informative components of spatial feature maps. More specifically, the proposed attention module consists of a channel attention block and a spatial attention block which adaptively aggregate the feature maps in both channel and spatial domains to learn the inter-channel relationship matrix and the inter-spatial relationship matrix, then matrix multiplications are conducted for a refined and robust face feature. With the attention module we proposed, we can make standard convolutional neural networks (CNNs), such as ResNet-50, ResNet-101 have more discriminative power for deep face recognition. The experiments on Labelled Faces in the Wild (LFW), Age Database (AgeDB), Celebrities in Frontal Profile (CFP) and MegaFace Challenge 1 (MF1) show that our proposed ACNN architecture consistently outperforms naive CNNs and achieves the state-of-the-art performance.
wit
88) [2020] ASLFeat: Learning Local Features of Accurate Shape and Localization
ASLFeat: Learning Local Features of Accurate Shape and Localization
Zixin LuoLei ZhouXuyang BaiHongkai ChenJiahui ZhangYao YaoShiwei LiTian FangLong Quan
This work focuses on mitigating two limitations in the joint learning of local feature detectors and descriptors. First, the ability to estimate the local shape (scale, orientation, etc.) of feature points is often neglected during dense feature extraction, while the shape-awareness is crucial to acquire stronger geometric invariance. Second, the localization accuracy of detected keypoints is not sufficient to reliably recover camera geometry, which has become the bottleneck in tasks such as 3D reconstruction. In this paper, we present ASLFeat, with three light-weight yet effective modifications to mitigate above issues. First, we resort to deformable convolutional networks to densely estimate and apply local transformation. Second, we take advantage of the inherent feature hierarchy to restore spatial resolution and low-level details for accurate keypoint localization. Finally, we use a peakiness measurement to relate feature responses and derive more indicative detection scores. The effect of each modification is thoroughly studied, and the evaluation is extensively conducted across a variety of practical scenarios. State-of-the-art results are reported that demonstrate the superiority of our methods.
wit
87) [2020] Advance on large scale near-duplicate video retrieval
Advance on large scale near-duplicate video retrieval
Ling ShenRichang HongYanbin Hao
Emerging Internet services and applications attract increasing users to involve in diverse video-related activities, such as video searching, video downloading, video sharing and so on. As normal operations, they lead to an explosive growth of online video volume, and inevitably give rise to the massive near-duplicate contents. Near-duplicate video retrieval (NDVR) has always been a hot topic. The primary purpose of this paper is to present a comprehensive survey and an updated review of the advance on large-scale NDVR to supply guidance for researchers. Specifically, we summarize and compare the definitions of near-duplicate videos (NDVs) in the literature, analyze the relationship between NDVR and its related research topics theoretically, describe its generic framework in detail, investigate the existing state-of-the-art NDVR systems. Finally, we present the development trends and research directions of this topic.
wit
86) [2019] A Comparative Evaluation of Local Feature Descriptors for DeepFakes Detection
A Comparative Evaluation of Local Feature Descriptors for DeepFakes Detection
Zahid AkhtarDipankar Dasgupta
The global proliferation of affordable photographing devices and readily-available face image and video editing software has caused a remarkable rise in face manipulations, e.g., altering face skin color using FaceApp. Such synthetic manipulations are becoming a very perilous problem, as altered faces not only can fool human experts but also have detrimental consequences on automated face identification systems (AFIS). Thus, it is vital to formulate techniques to improve the robustness of AFIS against digital face manipulations. The most prominent countermeasure is face manipulation detection, which aims at discriminating genuine samples from manipulated ones. Over the years, analysis of microtextural features using local image descriptors has been successfully used in various applications owing to their flexibility, computational simplicity, and performances. Therefore, in this paper, we study the possibility of identifying manipulated faces via local feature descriptors. The comparative experimental investigation of ten local feature descriptors on a new and publicly available DeepfakeTIMIT database is reported.
wit
85) [2021] NeX: Real-time View Synthesis with Neural Basis Expansion
NeX: Real-time View Synthesis with Neural Basis Expansion
Suttisak WizadwongsaPakkapon PhongthaweeJiraphon YenphraphaiSupasorn Suwajanakorn
We present NeX, a new approach to novel view synthesis based on enhancements of multiplane image (MPI) that can reproduce next-level view-dependent effects -- in real time. Unlike traditional MPI that uses a set of simple RGB$\alpha$ planes, our technique models view-dependent effects by instead parameterizing each pixel as a linear combination of basis functions learned from a neural network. Moreover, we propose a hybrid implicit-explicit modeling strategy that improves upon fine detail and produces state-of-the-art results. Our method is evaluated on benchmark forward-facing datasets as well as our newly-introduced dataset designed to test the limit of view-dependent modeling with significantly more challenging effects such as rainbow reflections on a CD. Our method achieves the best overall scores across all major metrics on these datasets with more than 1000$\times$ faster rendering time than the state of the art. For real-time demos, visit https://nex-mpi.github.io/
aek
nick
pure
teng
84) [2021] pi-gan: Periodic implicit generative adversarial networks for 3d-aware image synthesis
pi-gan: Periodic implicit generative adversarial networks for 3d-aware image synthesis
Eric R. ChanMarco MonteiroPetr KellnhoferJiajun WuGordon Wetzstein
ploy
teng
83) [2020] Few-shot Knowledge Transfer for Fine-grained Cartoon Face Generation
Few-shot Knowledge Transfer for Fine-grained Cartoon Face Generation
Nan ZhuangCheng Yang
In this paper, we are interested in generating fine-grained cartoon faces for various groups. We assume that one of these groups consists of sufficient training data while the others only contain few samples. Although the cartoon faces of these groups share similar style, the appearances in various groups could still have some specific characteristics, which makes them differ from each other. A major challenge of this task is how to transfer knowledge among groups and learn group-specific characteristics with only few samples. In order to solve this problem, we propose a two-stage training process. First, a basic translation model for the basic group (which consists of sufficient data) is trained. Then, given new samples of other groups, we extend the basic model by creating group-specific branches for each new group. Group-specific branches are updated directly to capture specific appearances for each group while the remaining group-shared parameters are updated indirectly to maintain the distribution of intermediate feature space. In this manner, our approach is capable to generate high-quality cartoon faces for various groups.
moke
82) [2020] DeepI2I: Enabling Deep Hierarchical Image-to-Image Translation by Transferring from GANs
DeepI2I: Enabling Deep Hierarchical Image-to-Image Translation by Transferring from GANs
Yaxing WangLu YuJoost van de Weijer
Image-to-image translation has recently achieved remarkable results. But despite current success, it suffers from inferior performance when translations between classes require large shape changes. We attribute this to the high-resolution bottlenecks which are used by current state-of-the-art image-to-image methods. Therefore, in this work, we propose a novel deep hierarchical Image-to-Image Translation method, called DeepI2I. We learn a model by leveraging hierarchical features: (a) structural information contained in the shallow layers and (b) semantic information extracted from the deep layers. To enable the training of deep I2I models on small datasets, we propose a novel transfer learning method, that transfers knowledge from pre-trained GANs. Specifically, we leverage the discriminator of a pre-trained GANs (i.e. BigGAN or StyleGAN) to initialize both the encoder and the discriminator and the pre-trained generator to initialize the generator of our model. Applying knowledge transfer leads to an alignment problem between the encoder and generator. We introduce an adaptor network to address this. On many-class image-to-image translation on three datasets (Animal faces, Birds, and Foods) we decrease mFID by at least 35% when compared to the state-of-the-art. Furthermore, we qualitatively and quantitatively demonstrate that transfer learning significantly improves the performance of I2I systems, especially for small datasets. Finally, we are the first to perform I2I translations for domains with over 100 classes.
moke
81) [2021] Do 2D GANs Know 3D Shape? Unsupervised 3D shape reconstruction from 2D Image GANs
Do 2D GANs Know 3D Shape? Unsupervised 3D shape reconstruction from 2D Image GANs
Xingang PanBo DaiZiwei LiuChen Change LoyPing Luo
Natural images are projections of 3D objects on a 2D image plane. While state-of-the-art 2D generative models like GANs show unprecedented quality in modeling the natural image manifold, it is unclear whether they implicitly capture the underlying 3D object structures. And if so, how could we exploit such knowledge to recover the 3D shapes of objects in the images? To answer these questions, in this work, we present the first attempt to directly mine 3D geometric cues from an off-the-shelf 2D GAN that is trained on RGB images only. Through our investigation, we found that such a pre-trained GAN indeed contains rich 3D knowledge and thus can be used to recover 3D shape from a single 2D image in an unsupervised manner. The core of our framework is an iterative strategy that explores and exploits diverse viewpoint and lighting variations in the GAN image manifold. The framework does not require 2D keypoint or 3D annotations, or strong assumptions on object shapes (e.g. shapes are symmetric), yet it successfully recovers 3D shapes with high precision for human faces, cats, cars, and buildings. The recovered 3D shapes immediately allow high-quality image editing like relighting and object rotation. We quantitatively demonstrate the effectiveness of our approach compared to previous methods in both 3D shape reconstruction and face rotation. Our code is available at https://github.com/XingangPan/GAN2Shape.
moke
80) [2021] Navigating the GAN Parameter Space for Semantic Image Editing
Navigating the GAN Parameter Space for Semantic Image Editing
Anton CherepkovAndrey VoynovArtem Babenko
Generative Adversarial Networks (GANs) are currently an indispensable tool for visual editing, being a standard component of image-to-image translation and image restoration pipelines. Furthermore, GANs are especially useful for controllable generation since their latent spaces contain a wide range of interpretable directions, well suited for semantic editing operations. By gradually changing latent codes along these directions, one can produce impressive visual effects, unattainable without GANs. In this paper, we significantly expand the range of visual effects achievable with the state-of-the-art models, like StyleGAN2. In contrast to existing works, which mostly operate by latent codes, we discover interpretable directions in the space of the generator parameters. By several simple methods, we explore this space and demonstrate that it also contains a plethora of interpretable directions, which are an excellent source of non-trivial semantic manipulations. The discovered manipulations cannot be achieved by transforming the latent codes and can be used to edit both synthetic and real images. We release our code and models and hope they will serve as a handy tool for further efforts on GAN-based image editing.
moke
79) [2021] Emerging Properties in Self-Supervised Vision Transformers
Emerging Properties in Self-Supervised Vision Transformers
Mathilde CaronHugo TouvronIshan MisraHervé JégouJulien MairalPiotr BojanowskiArmand Joulin
In this paper, we question if self-supervised learning provides new properties to Vision Transformer (ViT) that stand out compared to convolutional networks (convnets). Beyond the fact that adapting self-supervised methods to this architecture works particularly well, we make the following observations: first, self-supervised ViT features contain explicit information about the semantic segmentation of an image, which does not emerge as clearly with supervised ViTs, nor with convnets. Second, these features are also excellent k-NN classifiers, reaching 78.3% top-1 on ImageNet with a small ViT. Our study also underlines the importance of momentum encoder, multi-crop training, and the use of small patches with ViTs. We implement our findings into a simple self-supervised method, called DINO, which we interpret as a form of self-distillation with no labels. We show the synergy between DINO and ViTs by achieving 80.1% top-1 on ImageNet in linear evaluation with ViT-Base.
moke
78) [2021] An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
Alexey DosovitskiyLucas BeyerAlexander KolesnikovDirk WeissenbornXiaohua ZhaiThomas UnterthinerMostafa DehghaniMatthias MindererGeorg HeigoldSylvain GellyJakob UszkoreitNeil Houlsby
While the Transformer architecture has become the de-facto standard for natural language processing tasks, its applications to computer vision remain limited. In vision, attention is either applied in conjunction with convolutional networks, or used to replace certain components of convolutional networks while keeping their overall structure in place. We show that this reliance on CNNs is not necessary and a pure transformer applied directly to sequences of image patches can perform very well on image classification tasks. When pre-trained on large amounts of data and transferred to multiple mid-sized or small image recognition benchmarks (ImageNet, CIFAR-100, VTAB, etc.), Vision Transformer (ViT) attains excellent results compared to state-of-the-art convolutional networks while requiring substantially fewer computational resources to train.
moke
ta
77) [2018] GAN Dissection: Visualizing and Understanding Generative Adversarial Networks
GAN Dissection: Visualizing and Understanding Generative Adversarial Networks
David BauJun-Yan ZhuHendrik StrobeltBolei ZhouJoshua B. TenenbaumWilliam T. FreemanAntonio Torralba
Generative Adversarial Networks (GANs) have recently achieved impressive results for many real-world applications, and many GAN variants have emerged with improvements in sample quality and training stability. However, they have not been well visualized or understood. How does a GAN represent our visual world internally? What causes the artifacts in GAN results? How do architectural choices affect GAN learning? Answering such questions could enable us to develop new insights and better models. In this work, we present an analytic framework to visualize and understand GANs at the unit-, object-, and scene-level. We first identify a group of interpretable units that are closely related to object concepts using a segmentation-based network dissection method. Then, we quantify the causal effect of interpretable units by measuring the ability of interventions to control objects in the output. We examine the contextual relationship between these units and their surroundings by inserting the discovered object concepts into new images. We show several practical applications enabled by our framework, from comparing internal representations across different layers, models, and datasets, to improving GANs by locating and removing artifact-causing units, to interactively manipulating objects in a scene. We provide open source interpretation tools to help researchers and practitioners better understand their GAN models.
moke
76) [2021] The Values Encoded in Machine Learning Research
The Values Encoded in Machine Learning Research
Abeba BirhanePratyusha KalluriDallas CardWilliam AgnewRavit DotanMichelle Bao
Machine learning (ML) currently exerts an outsized influence on the world, increasingly affecting communities and institutional practices. It is therefore critical that we question vague conceptions of the field as value-neutral or universally beneficial, and investigate what specific values the field is advancing. In this paper, we present a rigorous examination of the values of the field by quantitatively and qualitatively analyzing 100 highly cited ML papers published at premier ML conferences, ICML and NeurIPS. We annotate key features of papers which reveal their values: how they justify their choice of project, which aspects they uplift, their consideration of potential negative consequences, and their institutional affiliations and funding sources. We find that societal needs are typically very loosely connected to the choice of project, if mentioned at all, and that consideration of negative consequences is extremely rare. We identify 67 values that are uplifted in machine learning research, and, of these, we find that papers most frequently justify and assess themselves based on performance, generalization, efficiency, researcher understanding, novelty, and building on previous work. We present extensive textual evidence and analysis of how these values are operationalized. Notably, we find that each of these top values is currently being defined and applied with assumptions and implications generally supporting the centralization of power. Finally, we find increasingly close ties between these highly cited papers and tech companies and elite universities.
moke
75) [2021] Time-series Imputation of Temporally-occluded Multiagent Trajectories
Time-series Imputation of Temporally-occluded Multiagent Trajectories
Shayegan OmidshafieiDaniel HennesMarta GarneloEugene TarassovZhe WangRomuald ElieJerome T. ConnorPaul MullerIan GrahamWilliam SpearmanKarl Tuyls
In multiagent environments, several decision-making individuals interact while adhering to the dynamics constraints imposed by the environment. These interactions, combined with the potential stochasticity of the agents’ decision-making processes, make such systems complex and interesting to study from a dynamical perspective. Significant research has been conducted on learning models for forward-direction estimation of agent behaviors, for example, pedestrian predictions used for collision-avoidance in self-driving cars. However, in many settings, only sporadic observations of agents may be available in a given trajectory sequence. For instance, in football, subsets of players may come in and out of view of broadcast video footage, while unobserved players continue to interact off-screen. In this paper, we study the problem of multiagent time-series imputation, where available past and future observations of subsets of agents are used to estimate missing observations for other agents. Our approach, called the Graph Imputer, uses forward- and backward-information in combination with graph networks and variational autoencoders to enable learning of a distribution of imputed trajectories. We evaluate our approach on a dataset of football matches, using a projective camera module to train and evaluate our model for the off-screen player state estimation setting. We illustrate that our method outperforms several state-of-the-art approaches, including those hand-crafted for football.
mint
74) [2021] Barbershop: GAN-based Image Compositing using Segmentation Masks
Barbershop: GAN-based Image Compositing using Segmentation Masks
Peihao ZhuRameen AbdalJohn FemianiPeter Wonka
Seamlessly blending features from multiple images is extremely challenging because of complex relationships in lighting, geometry, and partial occlusion which cause coupling between different parts of the image. Even though recent work on GANs enables synthesis of realistic hair or faces, it remains difficult to combine them into a single, coherent, and plausible image rather than a disjointed set of image patches. We present a novel solution to image blending, particularly for the problem of hairstyle transfer, based on GAN-inversion. We propose a novel latent space for image blending which is better at preserving detail and encoding spatial information, and propose a new GAN-embedding algorithm which is able to slightly modify images to conform to a common segmentation mask. Our novel representation enables the transfer of the visual properties from multiple reference images including specific details such as moles and wrinkles, and because we do image blending in a latent-space we are able to synthesize images that are coherent. Our approach avoids blending artifacts present in other approaches and finds a globally consistent image. Our results demonstrate a significant improvement over the current state of the art in a user study, with users preferring our blending solution over 95 percent of the time.
ploy
73) [2020] High Resolution Zero-Shot Domain Adaptation of Synthetically Rendered Face Images
High Resolution Zero-Shot Domain Adaptation of Synthetically Rendered Face Images
Stephan J. GarbinMarek KowalskiMatthew JohnsonJamie Shotton
Generating photorealistic images of human faces at scale remains a prohibitively difficult task using computer graphics approaches. This is because these require the simulation of light to be photorealistic, which in turn requires physically accurate modelling of geometry, materials, and light sources, for both the head and the surrounding scene. Non-photorealistic renders however are increasingly easy to produce. In contrast to computer graphics approaches, generative models learned from more readily available 2D image data have been shown to produce samples of human faces that are hard to distinguish from real data. The process of learning usually corresponds to a loss of control over the shape and appearance of the generated images. For instance, even simple disentangling tasks such as modifying the hair independently of the face, which is trivial to accomplish in a computer graphics approach, remains an open research question. In this work, we propose an algorithm that matches a non-photorealistic, synthetically generated image to a latent vector of a pretrained StyleGAN2 model which, in turn, maps the vector to a photorealistic image of a person of the same pose, expression, hair, and lighting. In contrast to most previous work, we require no synthetic training data. To the best of our knowledge, this is the first algorithm of its kind to work at a resolution of 1K and represents a significant leap forward in visual realism.
ploy
72) [2020] Editing in Style: Uncovering the Local Semantics of GANs
Editing in Style: Uncovering the Local Semantics of GANs
Edo CollinsRaja BalaBob PriceSabine Süsstrunk
While the quality of GAN image synthesis has improved tremendously in recent years, our ability to control and condition the output is still limited. Focusing on StyleGAN, we introduce a simple and effective method for making local, semantically-aware edits to a target output image. This is accomplished by borrowing elements from a source image, also a GAN output, via a novel manipulation of style vectors. Our method requires neither supervision from an external model, nor involves complex spatial morphing operations. Instead, it relies on the emergent disentanglement of semantic objects that is learned by StyleGAN during its training. Semantic editing is demonstrated on GANs producing human faces, indoor scenes, cats, and cars. We measure the locality and photorealism of the edits produced by our method, and find that it accomplishes both.
moke
ploy
71) [2020] Neural Hair Rendering
Neural Hair Rendering
Menglei ChaiJian RenSergey Tulyakov
In this paper, we propose a generic neural-based hair rendering pipeline that can synthesize photo-realistic images from virtual 3D hair models. Unlike existing supervised translation methods that require model-level similarity to preserve consistent structure representation for both real images and fake renderings, our method adopts an unsupervised solution to work on arbitrary hair models. The key component of our method is a shared latent space to encode appearance-invariant structure information of both domains, which generates realistic renderings conditioned by extra appearance inputs. This is achieved by domain-specific pre-disentangled structure representation, partially shared domain encoder layers and a structure discriminator. We also propose a simple yet effective temporal conditioning method to enforce consistency for video sequence generation. We demonstrate the superiority of our method by testing it on a large number of portraits and comparing it with alternative baselines and state-of-the-art unsupervised image translation methods.
ploy
70) [2020] Intuitive, Interactive Beard and Hair Synthesis with Generative Models
Intuitive, Interactive Beard and Hair Synthesis with Generative Models
Kyle OlszewskiDuygu CeylanJun XingJose EchevarriaZhili ChenWeikai ChenHao Li
We present an interactive approach to synthesizing realistic variations in facial hair in images, ranging from subtle edits to existing hair to the addition of complex and challenging hair in images of clean-shaven subjects. To circumvent the tedious and computationally expensive tasks of modeling, rendering and compositing the 3D geometry of the target hairstyle using the traditional graphics pipeline, we employ a neural network pipeline that synthesizes realistic and detailed images of facial hair directly in the target image in under one second. The synthesis is controlled by simple and sparse guide strokes from the user defining the general structural and color properties of the target hairstyle. We qualitatively and quantitatively evaluate our chosen method compared to several alternative approaches. We show compelling interactive editing results with a prototype user interface that allows novice users to progressively refine the generated image to match their desired hairstyle, and demonstrate that our approach also allows for flexible and high-fidelity scalp hair synthesis.
ploy
69) [2020] Adversarial Latent Autoencoders
Adversarial Latent Autoencoders
Stanislav PidhorskyiDonald AdjerohGianfranco Doretto
Autoencoder networks are unsupervised approaches aiming at combining generative and representational properties by learning simultaneously an encoder-generator map. Although studied extensively, the issues of whether they have the same generative power of GANs, or learn disentangled representations, have not been fully addressed. We introduce an autoencoder that tackles these issues jointly, which we call Adversarial Latent Autoencoder (ALAE). It is a general architecture that can leverage recent improvements on GAN training procedures. We designed two autoencoders: one based on a MLP encoder, and another based on a StyleGAN generator, which we call StyleALAE. We verify the disentanglement properties of both architectures. We show that StyleALAE can not only generate 1024x1024 face images with comparable quality of StyleGAN, but at the same resolution can also produce face reconstructions and manipulations based on real images. This makes ALAE the first autoencoder able to compare with, and go beyond the capabilities of a generator-only type of architecture.
ploy
ta
68) [2019] Few-Shot Unsupervised Image-to-Image Translation
Few-Shot Unsupervised Image-to-Image Translation
Ming-Yu LiuXun HuangArun MallyaTero KarrasTimo AilaJaakko LehtinenJan Kautz
Unsupervised image-to-image translation methods learn to map images in a given class to an analogous image in a different class, drawing on unstructured (non-registered) datasets of images. While remarkably successful, current methods require access to many images in both source and destination classes at training time. We argue this greatly limits their use. Drawing inspiration from the human capability of picking up the essence of a novel object from a small number of examples and generalizing from there, we seek a few-shot, unsupervised image-to-image translation algorithm that works on previously unseen target classes that are specified, at test time, only by a few example images. Our model achieves this few-shot generation capability by coupling an adversarial training scheme with a novel network design. Through extensive experimental validation and comparisons to several baseline methods on benchmark datasets, we verify the effectiveness of the proposed framework. Our implementation and datasets are available at https://github.com/NVlabs/FUNIT .
ploy
67) [2020] StyleFlow: Attribute-conditioned Exploration of StyleGAN-Generated Images using Conditional Continuous Normalizing Flows
StyleFlow: Attribute-conditioned Exploration of StyleGAN-Generated Images using Conditional Continuous Normalizing Flows
Rameen AbdalPeihao ZhuNiloy MitraPeter Wonka
High-quality, diverse, and photorealistic images can now be generated by unconditional GANs (e.g., StyleGAN). However, limited options exist to control the generation process using (semantic) attributes, while still preserving the quality of the output. Further, due to the entangled nature of the GAN latent space, performing edits along one attribute can easily result in unwanted changes along other attributes. In this paper, in the context of conditional exploration of entangled latent spaces, we investigate the two sub-problems of attribute-conditioned sampling and attribute-controlled editing. We present StyleFlow as a simple, effective, and robust solution to both the sub-problems by formulating conditional exploration as an instance of conditional continuous normalizing flows in the GAN latent space conditioned by attribute features. We evaluate our method using the face and the car latent space of StyleGAN, and demonstrate fine-grained disentangled edits along various attributes on both real photographs and StyleGAN generated images. For example, for faces, we vary camera pose, illumination variation, expression, facial hair, gender, and age. Finally, via extensive qualitative and quantitative comparisons, we demonstrate the superiority of StyleFlow to other concurrent works.
ploy
66) [2020] Collaborative Learning for Faster StyleGAN Embedding
Collaborative Learning for Faster StyleGAN Embedding
Shanyan GuanYing TaiBingbing NiFeida ZhuFeiyue HuangXiaokang Yang
The latent code of the recent popular model StyleGAN has learned disentangled representations thanks to the multi-layer style-based generator. Embedding a given image back to the latent space of StyleGAN enables wide interesting semantic image editing applications. Although previous works are able to yield impressive inversion results based on an optimization framework, which however suffers from the efficiency issue. In this work, we propose a novel collaborative learning framework that consists of an efficient embedding network and an optimization-based iterator. On one hand, with the progress of training, the embedding network gives a reasonable latent code initialization for the iterator. On the other hand, the updated latent code from the iterator in turn supervises the embedding network. In the end, high-quality latent code can be obtained efficiently with a single forward pass through our embedding network. Extensive experiments demonstrate the effectiveness and efficiency of our work.
ploy
65) [2020] Swapping Autoencoder for Deep Image Manipulation
Swapping Autoencoder for Deep Image Manipulation
Taesung ParkJun-Yan ZhuOliver WangJingwan LuEli ShechtmanAlexei A. EfrosRichard Zhang
Deep generative models have become increasingly effective at producing realistic images from randomly sampled seeds, but using such models for controllable manipulation of existing images remains challenging. We propose the Swapping Autoencoder, a deep model designed specifically for image manipulation, rather than random sampling. The key idea is to encode an image with two independent components and enforce that any swapped combination maps to a realistic image. In particular, we encourage the components to represent structure and texture, by enforcing one component to encode co-occurrent patch statistics across different parts of an image. As our method is trained with an encoder, finding the latent codes for a new input image becomes trivial, rather than cumbersome. As a result, it can be used to manipulate real input images in various ways, including texture swapping, local and global editing, and latent code vector arithmetic. Experiments on multiple datasets show that our model produces better results and is substantially more efficient compared to recent generative models.
ploy

Friday 09 July 2021

64) [2020] Your Classifier is Secretly an Energy Based Model and You Should Treat it Like One
Your Classifier is Secretly an Energy Based Model and You Should Treat it Like One
Will GrathwohlKuan-Chieh WangJörn-Henrik JacobsenDavid DuvenaudMohammad NorouziKevin Swersky
We propose to reinterpret a standard discriminative classifier of p(y|x) as an energy based model for the joint distribution p(x,y). In this setting, the standard class probabilities can be easily computed as well as unnormalized values of p(x) and p(x|y). Within this framework, standard discriminative architectures may beused and the model can also be trained on unlabeled data. We demonstrate that energy based training of the joint distribution improves calibration, robustness, andout-of-distribution detection while also enabling our models to generate samplesrivaling the quality of recent GAN approaches. We improve upon recently proposed techniques for scaling up the training of energy based models and presentan approach which adds little overhead compared to standard classification training. Our approach is the first to achieve performance rivaling the state-of-the-artin both generative and discriminative learning within one hybrid model.
ta

Thursday 08 July 2021

63) [2020] Real-Time High-Resolution Background Matting
Real-Time High-Resolution Background Matting
Shanchuan LinAndrey RyabtsevSoumyadip SenguptaBrian CurlessSteve SeitzIra Kemelmacher-Shlizerman
We introduce a real-time, high-resolution background replacement technique which operates at 30fps in 4K resolution, and 60fps for HD on a modern GPU. Our technique is based on background matting, where an additional frame of the background is captured and used in recovering the alpha matte and the foreground layer. The main challenge is to compute a high-quality alpha matte, preserving strand-level hair details, while processing high-resolution images in real-time. To achieve this goal, we employ two neural networks; a base network computes a low-resolution result which is refined by a second network operating at high-resolution on selective patches. We introduce two largescale video and image matting datasets: VideoMatte240K and PhotoMatte13K/85. Our approach yields higher quality results compared to the previous state-of-the-art in background matting, while simultaneously yielding a dramatic boost in both speed and resolution.
aek
seminar
62) [2021] Fast Training of Neural Lumigraph Representations using Meta Learning
Fast Training of Neural Lumigraph Representations using Meta Learning
Alexander W. BergmanPetr KellnhoferGordon Wetzstein
Novel view synthesis is a long-standing problem in machine learning and computer vision. Significant progress has recently been made in developing neural scene representations and rendering techniques that synthesize photorealistic images from arbitrary views. These representations, however, are extremely slow to train and often also slow to render. Inspired by neural variants of image-based rendering, we develop a new neural rendering approach with the goal of quickly learning a high-quality representation which can also be rendered in real-time. Our approach, MetaNLR++, accomplishes this by using a unique combination of a neural shape representation and 2D CNN-based image feature extraction, aggregation, and re-projection. To push representation convergence times down to minutes, we leverage meta learning to learn neural shape and image feature priors which accelerate training. The optimized shape and image features can then be extracted using traditional graphics techniques and rendered in real time. We show that MetaNLR++ achieves similar or better novel view synthesis results in a fraction of the time that competing methods require.
61) [2013] See through walls with WiFi!
See through walls with WiFi!
Fadel AdibDina Katabi
60) [2020] Bootstrap your own latent: A new approach to self-supervised Learning
Bootstrap your own latent: A new approach to self-supervised Learning
Jean-Bastien GrillFlorian StrubFlorent AltchéCorentin TallecPierre H. RichemondElena BuchatskayaCarl DoerschBernardo Avila PiresZhaohan Daniel GuoMohammad Gheshlaghi AzarBilal PiotKoray KavukcuogluRémi MunosMichal Valko
We introduce Bootstrap Your Own Latent (BYOL), a new approach to self-supervised image representation learning. BYOL relies on two neural networks, referred to as online and target networks, that interact and learn from each other. From an augmented view of an image, we train the online network to predict the target network representation of the same image under a different augmented view. At the same time, we update the target network with a slow-moving average of the online network. While state-of-the art methods rely on negative pairs, BYOL achieves a new state of the art without them. BYOL reaches $74.3\%$ top-1 classification accuracy on ImageNet using a linear evaluation with a ResNet-50 architecture and $79.6\%$ with a larger ResNet. We show that BYOL performs on par or better than the current state of the art on both transfer and semi-supervised benchmarks. Our implementation and pretrained models are given on GitHub.
ta
59) [2011] Precise self-calibration of ultrasound based indoor localization systems
Precise self-calibration of ultrasound based indoor localization systems
Armin RungeMarcel BaunachReiner Kolla
Several ultrasound based localization systems consist of environmental anchor nodes, and mobile nodes, which estimate their own position by using a static infrastructure. For the location process, every anchor has to know its position. In most approaches, the location of all anchors has to be determined a priori manually. This procedure is time consuming and fault-prone. In this paper, we present Distribute & Erase and Explorer, two self-calibration methods for ultrasound based localization systems. The first uses a set of three pre-calibrated anchors to explore the whole localization system whereas the second refines the anchors' positions progressively. Both of our approaches require no additional hardware besides ultrasound receivers or transmitters, and radio transceivers, which have to be already available for the WSN based localization system.
nick
58) [2021] A CMOS-Integrated Radar-Assisted Cognitive Sensing Platform for Seamless Human-Robot Interactions
A CMOS-Integrated Radar-Assisted Cognitive Sensing Platform for Seamless Human-Robot Interactions
Zhongyuan FangLiheng LouKai TangWensong WangBo ChenYisheng WangYuanjin Zheng
With the rapid development of the internet of things (IoT), industry 4.0, smart manufacturing, intelligent building techniques, robots are becoming more and more demanding for emerging new applications. For robots used in complex environments, precise sensing of its surroundings is essential to enable safe and robust operation. Comprehensive and cognitive perception capability is needed to recognize human subjects in a complex and dynamic environment to avoid the possible collisions. Moreover, comprehensive sensing is required to enable accurate simultaneous localization and mapping (SLAM) under scenarios with clutters and moving human subjects. To achieve the goal, a CMOS-integrated radarassisted robot sensing platform is proposed. By leveraging the phased-array radar techniques and time-phase processing techniques, high accuracy can be achieved for localization and recognition of human subjects. Fabricated in a 65-nm CMOS process, the chip-scale radar sensing platform is with compact size. A series of experiments have been carried out on verifying the capabilities of the radar platform for ranging and human recognition based on vital signs, exploring the potential for seamless human-robot interaction applications.
nick
57) [2011] See-Through Walls: Motion Tracking Using Variance-Based Radio Tomography Networks
See-Through Walls: Motion Tracking Using Variance-Based Radio Tomography Networks
Joey WilsonNeal Patwari
This paper presents a new method for imaging, localizing, and tracking motion behind walls in real time. The method takes advantage of the motion-induced variance of received signal strength measurements made in a wireless peer-to-peer network. Using a multipath channel model, we show that the signal strength on a wireless link is largely dependent on the power contained in multipath components that travel through space containing moving objects. A statistical model relating variance to spatial locations of movement is presented and used as a framework for the estimation of a motion image. From the motion image, the Kalman filter is applied to recursively track the coordinates of a moving target. Experimental results for a 34-node through-wall imaging and tracking system over a 780 square foot area are presented.
nick
56) [2021] Radar SLAM: A Robust SLAM System for All Weather Conditions
Radar SLAM: A Robust SLAM System for All Weather Conditions
Ziyang HongYvan PetillotAndrew WallaceSen Wang
A Simultaneous Localization and Mapping (SLAM) system must be robust to support long-term mobile vehicle and robot applications. However, camera and LiDAR based SLAM systems can be fragile when facing challenging illumination or weather conditions which degrade their imagery and point cloud data. Radar, whose operating electromagnetic spectrum is less affected by environmental changes, is promising although its distinct sensing geometry and noise characteristics bring open challenges when being exploited for SLAM. % However, there are still open challenges since most existing visual and LiDAR SLAM systems do not operate in bad weathers. This paper studies the use of a Frequency Modulated Continuous Wave radar for SLAM in large-scale outdoor environments. We propose a full radar SLAM system, including a novel radar motion tracking algorithm that leverages radar geometry for reliable feature tracking. It also optimally compensates motion distortion and estimates pose by joint optimization. Its loop closure component is designed to be simple yet efficient for radar imagery by capturing and exploiting structural information of the surrounding environment. % while a scheme to reject ambiguous loop closure candidates is also designed specifically for radar. Extensive experiments on three public radar datasets, ranging from city streets and residential areas to countryside and highways, show competitive accuracy and reliability performance of the proposed radar SLAM system compared to the state-of-the-art LiDAR, vision and radar methods. The results show that our system is technically viable in achieving reliable SLAM in extreme weather conditions, e.g. heavy snow and dense fog, demonstrating the promising potential of using radar for all-weather localization and mapping.
nick
55) [2019] An Innovative Harmonic Radar to Track Flying Insects: the Case of Vespa velutina
An Innovative Harmonic Radar to Track Flying Insects: the Case of Vespa velutina
Riccardo MaggioraMaurice SaccaniDaniele MilanesioMarco Porporato
Over the last 30 years, harmonic radars have been effective only in tracking insects flying at low altitude and over flat terrain. We developed an innovative harmonic radar, implementing the most advanced radar techniques, which covers a large field of view in elevation (with an angular aperture of about 24°) and can track insects up to a range of 500 m. We show all the components of this new harmonic radar and its first application, the tracking of Vespa velutina (yellow-legged Asian hornet). This is an invasive species which, although indigenous to South-East Asia, is spreading quickly to other regions of the world. Because of its fast diffusion and the serious threat it poses to both honeybee colonies and to humans, control measures are mandatory. When equipped with a small passive transponder, this radar system can track the flight trajectory of insects and locate nests to be destroyed. This tool has potential not only for monitoring V. velutina but also for tracking other larger insects and small size vertebrates.
nick
54) [2016] Tracking of Extended Objects with High-Resolution Doppler Radar
Tracking of Extended Objects with High-Resolution Doppler Radar
Dominik KellnerMichael BarjenbruchJens KlappsteinJürgen DickmannKlaus Dietmayer
In an urban environment, one of the key challenges remains to be the reliable estimation of the other traffic participants' motion state. Due to the highly nonlinear motions in city traffic, an instant and precise estimation of heading direction, velocity, and, particularly, yaw rate is required. Radar sensors are well suited for this task due to their robustness to environmental influences and direct measurement of the radial (Doppler) velocity. High-resolution radars receive multiple reflections from an extended object. In comparison to state-of-the-art approaches, not only is the Doppler velocity of a single reference point taken into account, but also is the distribution of the Doppler velocity across the vehicle analyzed. The velocity profile is derived with characteristic features and a corresponding sample covariance. These are fused into an unscented Kalman filter, resulting in a significant accuracy improvement and a reduction in the latency of the filter to almost zero during a change in motion or initialization. This yields a great improvement in determining the trajectories of potential critical objects, increasing the time to avoid collisions. Furthermore, the approach enables simultaneous identification of the rotation center of the object, which is essential for the tracking of highly dynamic maneuvers. All approaches were implemented and evaluated on a large experimental data set using highly precise reference systems as ground truth. The results show an impressive improvement in the accuracy of the yaw rate estimation of a factor of 3-4 compared with state-of-the-art approaches in a dynamic scenario.
nick
53) Detecting Passive Radar Reflectors for Automotive Applications
Detecting Passive Radar Reflectors for Automotive Applications
12312236
This report has been developed in the Arctic Challenge research project. The Arctic Challenge research project is funded by the Finnish Transport Agency (FTA) and the Finnish Transport Safety Agency (TraFi). The project is part of the Aurora intelligent road project of the Finnish Transport Agency and the NordicWay2 project funded by the Connecting Europe Facility of the European Union. The testing weeks for the research project will take place on the 10-km-long test stretch of the Aurora Vt21 (E8) intelligent road section in the years 2017–2019. Furthermore, the project is part of the Traffic Lab cooperation. The contracting partners involved in the research project include Dynniq Finland Oy, Indagon Oy, Infotripla Oy, Lapland University of Applied Sciences Oy, Roadscanners Oy, Sensible 4 Oy and VTT Technical Research Centre of Finland Oy.
nick
52) Radar reflecting pavement markers for vehicle automation
Radar reflecting pavement markers for vehicle automation
nick
51) [2021] A Review of Indoor Localization Techniques and Wireless Technologies
A Review of Indoor Localization Techniques and Wireless Technologies
Huthaifa ObeidatWafa ShuaiebOmar ObeidatRaed Abd-Alhameed
This paper introduces a review article on indoor localization techniques and technologies. The paper starts with current localization systems and summarizes comparisons between these systems in terms of accuracy, cost, advantages, and disadvantages. Also, the paper presents different detection techniques and compare them in terms of accuracy and cost. Finally, localization methods and algorithms, including angle of arrival (AOA), time of arrival (TOA), and recived signal strength (RSS) are introduced. The study contains concepts, requirements, and specifications for each category of methods presents pros and cons for investigated methods, and conducts comparisons between them.
nick
50) [2020] Prophet Attention: Predicting Attention with Future Attention
Prophet Attention: Predicting Attention with Future Attention
Fenglin LiuXuancheng RenXian WuShen GeWei FanYuexian ZouXu Sun
nick
49) [2016] Automated GPR Rebar Analysis for Robotic Bridge Deck Evaluation
Automated GPR Rebar Analysis for Robotic Bridge Deck Evaluation
Parneet KaurKristin J. DanaFrancisco A. RomeroNenad Gucunski
Ground penetrating radar (GPR) is used to evaluate deterioration of reinforced concrete bridge decks based on measuring signal attenuation from embedded rebar. The existing methods for obtaining deterioration maps from GPR data often require manual interaction and offsite processing. In this paper, a novel algorithm is presented for automated rebar detection and analysis. We test the process with comprehensive measurements obtained using a novel state-of-the-art robotic bridge inspection system equipped with GPR sensors. The algorithm achieves robust performance by integrating machine learning classification using image-based gradient features and robust curve fitting of the rebar hyperbolic signature. The approach avoids edge detection, thresholding, and template matching that require manual tuning and are known to perform poorly in the presence of noise and outliers. The detected hyperbolic signatures of rebars within the bridge deck are used to generate deterioration maps of the bridge deck. The results of the rebar region detector are compared quantitatively with several methods of image-based classification and a significant performance advantage is demonstrated. High rates of accuracy are reported on real data that includes thousands of individual hyperbolic rebar signatures from three real bridge decks.
nick
48) [2020] Contrastive learning of global and local features for medical image segmentation with limited annotations
Contrastive learning of global and local features for medical image segmentation with limited annotations
Krishna ChaitanyaErtunc ErdilNeerav KaraniEnder Konukoglu
A key requirement for the success of supervised deep learning is a large labeled dataset - a condition that is difficult to meet in medical image analysis. Self-supervised learning (SSL) can help in this regard by providing a strategy to pre-train a neural network with unlabeled data, followed by fine-tuning for a downstream task with limited annotations. Contrastive learning, a particular variant of SSL, is a powerful technique for learning image-level representations. In this work, we propose strategies for extending the contrastive learning framework for segmentation of volumetric medical images in the semi-supervised setting with limited annotations, by leveraging domain-specific and problem-specific cues. Specifically, we propose (1) novel contrasting strategies that leverage structural similarity across volumetric medical images (domain-specific cue) and (2) a local version of the contrastive loss to learn distinctive representations of local regions that are useful for per-pixel segmentation (problem-specific cue). We carry out an extensive evaluation on three Magnetic Resonance Imaging (MRI) datasets. In the limited annotation setting, the proposed method yields substantial improvements compared to other self-supervision and semi-supervised learning techniques. When combined with a simple data augmentation technique, the proposed method reaches within 8% of benchmark performance using only two labeled MRI volumes for training, corresponding to only 4% (for ACDC) of the training data used to train the benchmark. The code is made public at https://github.com/krishnabits001/domain_specific_cl.
nick

Wednesday 07 July 2021

47) [2021] Perceiver: General Perception with Iterative Attention
Perceiver: General Perception with Iterative Attention
Andrew JaegleFelix GimenoAndrew BrockAndrew ZissermanOriol VinyalsJoao Carreira
Biological systems perceive the world by simultaneously processing high-dimensional inputs from modalities as diverse as vision, audition, touch, proprioception, etc. The perception models used in deep learning on the other hand are designed for individual modalities, often relying on domain-specific assumptions such as the local grid structures exploited by virtually all existing vision models. These priors introduce helpful inductive biases, but also lock models to individual modalities. In this paper we introduce the Perceiver - a model that builds upon Transformers and hence makes few architectural assumptions about the relationship between its inputs, but that also scales to hundreds of thousands of inputs, like ConvNets. The model leverages an asymmetric attention mechanism to iteratively distill inputs into a tight latent bottleneck, allowing it to scale to handle very large inputs. We show that this architecture is competitive with or outperforms strong, specialized models on classification tasks across various modalities: images, point clouds, audio, video, and video+audio. The Perceiver obtains performance comparable to ResNet-50 and ViT on ImageNet without 2D convolutions by directly attending to 50,000 pixels. It is also competitive in all modalities in AudioSet.
ta
46) [2021] High-Performance Large-Scale Image Recognition Without Normalization
High-Performance Large-Scale Image Recognition Without Normalization
Andrew BrockSoham DeSamuel L. SmithKaren Simonyan
Batch normalization is a key component of most image classification models, but it has many undesirable properties stemming from its dependence on the batch size and interactions between examples. Although recent work has succeeded in training deep ResNets without normalization layers, these models do not match the test accuracies of the best batch-normalized networks, and are often unstable for large learning rates or strong data augmentations. In this work, we develop an adaptive gradient clipping technique which overcomes these instabilities, and design a significantly improved class of Normalizer-Free ResNets. Our smaller models match the test accuracy of an EfficientNet-B7 on ImageNet while being up to 8.7x faster to train, and our largest models attain a new state-of-the-art top-1 accuracy of 86.5%. In addition, Normalizer-Free models attain significantly better performance than their batch-normalized counterparts when finetuning on ImageNet after large-scale pre-training on a dataset of 300 million labeled images, with our best models obtaining an accuracy of 89.2%. Our code is available at https://github.com/deepmind/ deepmind-research/tree/master/nfnets
ta

Tuesday 06 July 2021

45) [2021] Learning Continuous Image Representation with Local Implicit Image Function
Learning Continuous Image Representation with Local Implicit Image Function
Yinbo ChenSifei LiuXiaolong Wang
How to represent an image? While the visual world is presented in a continuous manner, machines store and see the images in a discrete way with 2D arrays of pixels. In this paper, we seek to learn a continuous representation for images. Inspired by the recent progress in 3D reconstruction with implicit neural representation, we propose Local Implicit Image Function (LIIF), which takes an image coordinate and the 2D deep features around the coordinate as inputs, predicts the RGB value at a given coordinate as an output. Since the coordinates are continuous, LIIF can be presented in arbitrary resolution. To generate the continuous representation for images, we train an encoder with LIIF representation via a self-supervised task with super-resolution. The learned continuous representation can be presented in arbitrary resolution even extrapolate to x30 higher resolution, where the training tasks are not provided. We further show that LIIF representation builds a bridge between discrete and continuous representation in 2D, it naturally supports the learning tasks with size-varied image ground-truths and significantly outperforms the method with resizing the ground-truths.
som
44) [2021] Exploiting Spatial Dimensions of Latent in GAN for Real-time Image Editing
Exploiting Spatial Dimensions of Latent in GAN for Real-time Image Editing
Hyunsu KimYunjey ChoiJunho KimSungjoo YooYoungjung Uh
Generative adversarial networks (GANs) synthesize realistic images from random latent vectors. Although manipulating the latent vectors controls the synthesized outputs, editing real images with GANs suffers from i) time-consuming optimization for projecting real images to the latent vectors, ii) or inaccurate embedding through an encoder. We propose StyleMapGAN: the intermediate latent space has spatial dimensions, and a spatially variant modulation replaces AdaIN. It makes the embedding through an encoder more accurate than existing optimization-based methods while maintaining the properties of GANs. Experimental results demonstrate that our method significantly outperforms state-of-the-art models in various image manipulation tasks such as local editing and image interpolation. Last but not least, conventional editing methods on GANs are still valid on our StyleMapGAN. Source code is available at https://github.com/naver-ai/StyleMapGAN.
som
43) [2021] Neural Ray-Tracing: Learning Surfaces and Reflectance for Relighting and View Synthesis
Neural Ray-Tracing: Learning Surfaces and Reflectance for Relighting and View Synthesis
Julian KnodtSeung-Hwan BaekFelix Heide
Recent neural rendering methods have demonstrated accurate view interpolation by predicting volumetric density and color with a neural network. Although such volumetric representations can be supervised on static and dynamic scenes, existing methods implicitly bake the complete scene light transport into a single neural network for a given scene, including surface modeling, bidirectional scattering distribution functions, and indirect lighting effects. In contrast to traditional rendering pipelines, this prohibits changing surface reflectance, illumination, or composing other objects in the scene. In this work, we explicitly model the light transport between scene surfaces and we rely on traditional integration schemes and the rendering equation to reconstruct a scene. The proposed method allows BSDF recovery with unknown light conditions and classic light transports such as pathtracing. By learning decomposed transport with surface representations established in conventional rendering methods, the method naturally facilitates editing shape, reflectance, lighting and scene composition. The method outperforms NeRV for relighting under known lighting conditions, and produces realistic reconstructions for relit and edited scenes. We validate the proposed approach for scene editing, relighting and reflectance estimation learned from synthetic and captured views on a subset of NeRV's datasets.
pure
42) [2020] DeepSVG: A Hierarchical Generative Network for Vector Graphics Animation
DeepSVG: A Hierarchical Generative Network for Vector Graphics Animation
Alexandre CarlierMartin DanelljanAlexandre AlahiRadu Timofte
Scalable Vector Graphics (SVG) are ubiquitous in modern 2D interfaces due to their ability to scale to different resolutions. However, despite the success of deep learning-based models applied to rasterized images, the problem of vector graphics representation learning and generation remains largely unexplored. In this work, we propose a novel hierarchical generative network, called DeepSVG, for complex SVG icons generation and interpolation. Our architecture effectively disentangles high-level shapes from the low-level commands that encode the shape itself. The network directly predicts a set of shapes in a non-autoregressive fashion. We introduce the task of complex SVG icons generation by releasing a new large-scale dataset along with an open-source library for SVG manipulation. We demonstrate that our network learns to accurately reconstruct diverse vector graphics, and can serve as a powerful animation tool by performing interpolations and other latent space operations. Our code is available at https://github.com/alexandre01/deepsvg.
41) [2020] Single-Image HDR Reconstruction by Learning to Reverse the Camera Pipeline
Single-Image HDR Reconstruction by Learning to Reverse the Camera Pipeline
Yu-Lun LiuWei-Sheng LaiYu-Sheng ChenYi-Lung KaoMing-Hsuan YangYung-Yu ChuangJia-Bin Huang
Recovering a high dynamic range (HDR) image from a single low dynamic range (LDR) input image is challenging due to missing details in under-/over-exposed regions caused by quantization and saturation of camera sensors. In contrast to existing learning-based methods, our core idea is to incorporate the domain knowledge of the LDR image formation pipeline into our model. We model the HDRto-LDR image formation pipeline as the (1) dynamic range clipping, (2) non-linear mapping from a camera response function, and (3) quantization. We then propose to learn three specialized CNNs to reverse these steps. By decomposing the problem into specific sub-tasks, we impose effective physical constraints to facilitate the training of individual sub-networks. Finally, we jointly fine-tune the entire model end-to-end to reduce error accumulation. With extensive quantitative and qualitative experiments on diverse image datasets, we demonstrate that the proposed method performs favorably against state-of-the-art single-image HDR reconstruction algorithms.
40) [2019] AdaBits: Neural Network Quantization with Adaptive Bit-Widths
AdaBits: Neural Network Quantization with Adaptive Bit-Widths
Qing JinLinjie YangZhenyu Liao
Deep neural networks with adaptive configurations have gained increasing attention due to the instant and flexible deployment of these models on platforms with different resource budgets. In this paper, we investigate a novel option to achieve this goal by enabling adaptive bit-widths of weights and activations in the model. We first examine the benefits and challenges of training quantized model with adaptive bit-widths, and then experiment with several approaches including direct adaptation, progressive training and joint training. We discover that joint training is able to produce comparable performance on the adaptive model as individual models. We further propose a new technique named Switchable Clipping Level (S-CL) to further improve quantized models at the lowest bit-width. With our proposed techniques applied on a bunch of models including MobileNet-V1/V2 and ResNet-50, we demonstrate that bit-width of weights and activations is a new option for adaptively executable deep neural networks, offering a distinct opportunity for improved accuracy-efficiency trade-off as well as instant adaptation according to the platform constraints in real-world applications.
pure
39) [2020] Nimble: Lightweight and Parallel GPU Task Scheduling for Deep Learning
Nimble: Lightweight and Parallel GPU Task Scheduling for Deep Learning
Woosuk KwonGyeong-In YuEunji JeongByung-Gon Chun
Deep learning (DL) frameworks take advantage of GPUs to improve the speed of DL inference and training. Ideally, DL frameworks should be able to fully utilize the computation power of GPUs such that the running time depends on the amount of computation assigned to GPUs. Yet, we observe that in scheduling GPU tasks, existing DL frameworks suffer from inefficiencies such as large scheduling overhead and unnecessary serial execution. To this end, we propose Nimble, a DL execution engine that runs GPU tasks in parallel with minimal scheduling overhead. Nimble introduces a novel technique called ahead-of-time (AoT) scheduling. Here, the scheduling procedure finishes before executing the GPU kernel, thereby removing most of the scheduling overhead during run time. Furthermore, Nimble automatically parallelizes the execution of GPU tasks by exploiting multiple GPU streams in a single GPU. Evaluation on a variety of neural networks shows that compared to PyTorch, Nimble speeds up inference and training by up to 22.34$\times$ and 3.61$\times$, respectively. Moreover, Nimble outperforms state-of-the-art inference systems, TensorRT and TVM, by up to 2.81$\times$ and 1.70$\times$, respectively.
pure
38) [2021] NeRF in detail: Learning to sample for view synthesis
NeRF in detail: Learning to sample for view synthesis
Relja ArandjelovićAndrew Zisserman
Neural radiance fields (NeRF) methods have demonstrated impressive novel view synthesis performance. The core approach is to render individual rays by querying a neural network at points sampled along the ray to obtain the density and colour of the sampled points, and integrating this information using the rendering equation. Since dense sampling is computationally prohibitive, a common solution is to perform coarse-to-fine sampling. In this work we address a clear limitation of the vanilla coarse-to-fine approach -- that it is based on a heuristic and not trained end-to-end for the task at hand. We introduce a differentiable module that learns to propose samples and their importance for the fine network, and consider and compare multiple alternatives for its neural architecture. Training the proposal module from scratch can be unstable due to lack of supervision, so an effective pre-training strategy is also put forward. The approach, named `NeRF in detail' (NeRF-ID), achieves superior view synthesis quality over NeRF and the state-of-the-art on the synthetic Blender benchmark and on par or better performance on the real LLFF-NeRF scenes. Furthermore, by leveraging the predicted sample importance, a 25% saving in computation can be achieved without significantly sacrificing the rendering quality.
pure
ta
37) [2021] Neural 3D Scene Compression via Model Compression
Neural 3D Scene Compression via Model Compression
Berivan Isik
Rendering 3D scenes requires access to arbitrary viewpoints from the scene. Storage of such a 3D scene can be done in two ways; (1) storing 2D images taken from the 3D scene that can reconstruct the scene back through interpolations, or (2) storing a representation of the 3D scene itself that already encodes views from all directions. So far, traditional 3D compression methods have focused on the first type of storage and compressed the original 2D images with image compression techniques. With this approach, the user first decodes the stored 2D images and then renders the 3D scene. However, this separated procedure is inefficient since a large amount of 2D images have to be stored. In this work, we take a different approach and compress a functional representation of 3D scenes. In particular, we introduce a method to compress 3D scenes by compressing the neural networks that represent the scenes as neural radiance fields. Our method provides more efficient storage of 3D scenes since it does not store 2D images -- which are redundant when we render the scene from the neural functional representation.
pure
36) [2021] NeLF: Practical Novel View Synthesis with Neural Light Field
NeLF: Practical Novel View Synthesis with Neural Light Field
Celong LiuZhong LiJunsong YuanYi Xu
In this paper, we present an efficient and robust deep learning solution for novel view synthesis of complex scenes. In our approach, a 3D scene is represented as a light field, i.e., a set of rays, each of which has a corresponding color when reaching the image plane. For efficient novel view rendering, we adopt a 4D parameterization of the light field, where each ray is characterized by a 4D parameter. We then formulate the light field as a 4D function that maps 4D coordinates to corresponding color values. We train a deep fully connected network to optimize this implicit function and memorize the 3D scene. Then, the scene-specific model is used to synthesize novel views. Different from previous light field approaches which require dense view sampling to reliably render novel views, our method can render novel views by sampling rays and querying the color for each ray from the network directly, thus enabling high-quality light field rendering with a sparser set of training images. Our method achieves state-of-the-art novel view synthesis results while maintaining an interactive frame rate.
35) [2021] Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis
Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis
Ajay JainMatthew TancikPieter Abbeel
We present DietNeRF, a 3D neural scene representation estimated from a few images. Neural Radiance Fields (NeRF) learn a continuous volumetric representation of a scene through multi-view consistency, and can be rendered from novel viewpoints by ray casting. While NeRF has an impressive ability to reconstruct geometry and fine details given many images, up to 100 for challenging 360{\deg} scenes, it often finds a degenerate solution to its image reconstruction objective when only a few input views are available. To improve few-shot quality, we propose DietNeRF. We introduce an auxiliary semantic consistency loss that encourages realistic renderings at novel poses. DietNeRF is trained on individual scenes to (1) correctly render given input views from the same pose, and (2) match high-level semantic attributes across different, random poses. Our semantic loss allows us to supervise DietNeRF from arbitrary poses. We extract these semantics using a pre-trained visual encoder such as CLIP, a Vision Transformer trained on hundreds of millions of diverse single-view, 2D photographs mined from the web with natural language supervision. In experiments, DietNeRF improves the perceptual quality of few-shot view synthesis when learned from scratch, can render novel views with as few as one observed image when pre-trained on a multi-view dataset, and produces plausible completions of completely unobserved regions.
pure
34) [2021] FastNeRF: High-Fidelity Neural Rendering at 200FPS
FastNeRF: High-Fidelity Neural Rendering at 200FPS
Stephan J. GarbinMarek KowalskiMatthew JohnsonJamie ShottonJulien Valentin
Recent work on Neural Radiance Fields (NeRF) showed how neural networks can be used to encode complex 3D environments that can be rendered photorealistically from novel viewpoints. Rendering these images is very computationally demanding and recent improvements are still a long way from enabling interactive rates, even on high-end hardware. Motivated by scenarios on mobile and mixed reality devices, we propose FastNeRF, the first NeRF-based system capable of rendering high fidelity photorealistic images at 200Hz on a high-end consumer GPU. The core of our method is a graphics-inspired factorization that allows for (i) compactly caching a deep radiance map at each position in space, (ii) efficiently querying that map using ray directions to estimate the pixel values in the rendered image. Extensive experiments show that the proposed method is 3000 times faster than the original NeRF algorithm and at least an order of magnitude faster than existing work on accelerating NeRF, while maintaining visual quality and extensibility.
aek
pure
33) [2021] BARF: Bundle-Adjusting Neural Radiance Fields
BARF: Bundle-Adjusting Neural Radiance Fields
Chen-Hsuan LinWei-Chiu MaAntonio TorralbaSimon Lucey
Neural Radiance Fields (NeRF) have recently gained a surge of interest within the computer vision community for its power to synthesize photorealistic novel views of real-world scenes. One limitation of NeRF, however, is its requirement of accurate camera poses to learn the scene representations. In this paper, we propose Bundle-Adjusting Neural Radiance Fields (BARF) for training NeRF from imperfect (or even unknown) camera poses -- the joint problem of learning neural 3D representations and registering camera frames. We establish a theoretical connection to classical image alignment and show that coarse-to-fine registration is also applicable to NeRF. Furthermore, we show that na\"ively applying positional encoding in NeRF has a negative impact on registration with a synthesis-based objective. Experiments on synthetic and real-world data show that BARF can effectively optimize the neural scene representations and resolve large camera pose misalignment at the same time. This enables view synthesis and localization of video sequences from unknown camera poses, opening up new avenues for visual localization systems (e.g. SLAM) and potential applications for dense 3D mapping and reconstruction.
pure
32) [2019] Differentiable Volumetric Rendering: Learning Implicit 3D Representations without 3D Supervision
Differentiable Volumetric Rendering: Learning Implicit 3D Representations without 3D Supervision
Michael NiemeyerLars MeschederMichael OechsleAndreas Geiger
Learning-based 3D reconstruction methods have shown impressive results. However, most methods require 3D supervision which is often hard to obtain for real-world datasets. Recently, several works have proposed differentiable rendering techniques to train reconstruction models from RGB images. Unfortunately, these approaches are currently restricted to voxel- and mesh-based representations, suffering from discretization or low resolution. In this work, we propose a differentiable rendering formulation for implicit shape and texture representations. Implicit representations have recently gained popularity as they represent shape and texture continuously. Our key insight is that depth gradients can be derived analytically using the concept of implicit differentiation. This allows us to learn implicit shape and texture representations directly from RGB images. We experimentally show that our single-view reconstructions rival those learned with full 3D supervision. Moreover, we find that our method can be used for multi-view 3D reconstruction, directly resulting in watertight meshes.
31) [2021] UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction
UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction
Michael OechsleSongyou PengAndreas Geiger
Neural implicit 3D representations have emerged as a powerful paradigm for reconstructing surfaces from multi-view images and synthesizing novel views. Unfortunately, existing methods such as DVR or IDR require accurate per-pixel object masks as supervision. At the same time, neural radiance fields have revolutionized novel view synthesis. However, NeRF's estimated volume density does not admit accurate surface reconstruction. Our key insight is that implicit surface models and radiance fields can be formulated in a unified way, enabling both surface and volume rendering using the same model. This unified perspective enables novel, more efficient sampling procedures and the ability to reconstruct accurate surfaces without input masks. We compare our method on the DTU, BlendedMVS, and a synthetic indoor dataset. Our experiments demonstrate that we outperform NeRF in terms of reconstruction quality while performing on par with IDR without requiring masks.
pure
30) [2021] RGB-D Local Implicit Function for Depth Completion of Transparent Objects
RGB-D Local Implicit Function for Depth Completion of Transparent Objects
Luyang ZhuArsalan MousavianYu XiangHammad MazharJozef van EenbergenShoubhik DebnathDieter Fox
Majority of the perception methods in robotics require depth information provided by RGB-D cameras. However, standard 3D sensors fail to capture depth of transparent objects due to refraction and absorption of light. In this paper, we introduce a new approach for depth completion of transparent objects from a single RGB-D image. Key to our approach is a local implicit neural representation built on ray-voxel pairs that allows our method to generalize to unseen objects and achieve fast inference speed. Based on this representation, we present a novel framework that can complete missing depth given noisy RGB-D input. We further improve the depth estimation iteratively using a self-correcting refinement model. To train the whole pipeline, we build a large scale synthetic dataset with transparent objects. Experiments demonstrate that our method performs significantly better than the current state-of-the-art methods on both synthetic and real world data. In addition, our approach improves the inference speed by a factor of 20 compared to the previous best method, ClearGrasp. Code and dataset will be released at https://research.nvidia.com/publication/2021-03_RGB-D-Local-Implicit.
29) [2021] PhySG: Inverse Rendering with Spherical Gaussians for Physics-based Material Editing and Relighting
PhySG: Inverse Rendering with Spherical Gaussians for Physics-based Material Editing and Relighting
Kai ZhangFujun LuanQianqian WangKavita BalaNoah Snavely
We present PhySG, an end-to-end inverse rendering pipeline that includes a fully differentiable renderer and can reconstruct geometry, materials, and illumination from scratch from a set of RGB input images. Our framework represents specular BRDFs and environmental illumination using mixtures of spherical Gaussians, and represents geometry as a signed distance function parameterized as a Multi-Layer Perceptron. The use of spherical Gaussians allows us to efficiently solve for approximate light transport, and our method works on scenes with challenging non-Lambertian reflectance captured under natural, static illumination. We demonstrate, with both synthetic and real data, that our reconstructions not only enable rendering of novel viewpoints, but also physics-based appearance editing of materials and illumination.
pure
28) [2021] NeRF--: Neural Radiance Fields Without Known Camera Parameters
NeRF--: Neural Radiance Fields Without Known Camera Parameters
Zirui WangShangzhe WuWeidi XieMin ChenVictor Adrian Prisacariu
This paper tackles the problem of novel view synthesis (NVS) from 2D images without known camera poses and intrinsics. Among various NVS techniques, Neural Radiance Field (NeRF) has recently gained popularity due to its remarkable synthesis quality. Existing NeRF-based approaches assume that the camera parameters associated with each input image are either directly accessible at training, or can be accurately estimated with conventional techniques based on correspondences, such as Structure-from-Motion. In this work, we propose an end-to-end framework, termed NeRF--, for training NeRF models given only RGB images, without pre-computed camera parameters. Specifically, we show that the camera parameters, including both intrinsics and extrinsics, can be automatically discovered via joint optimisation during the training of the NeRF model. On the standard LLFF benchmark, our model achieves comparable novel view synthesis results compared to the baseline trained with COLMAP pre-computed camera parameters. We also conduct extensive analyses to understand the model behaviour under different camera trajectories, and show that in scenarios where COLMAP fails, our model still produces robust results.
pure
ta
27) [2021] KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny MLPs
KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny MLPs
Christian ReiserSongyou PengYiyi LiaoAndreas Geiger
NeRF synthesizes novel views of a scene with unprecedented quality by fitting a neural radiance field to RGB images. However, NeRF requires querying a deep Multi-Layer Perceptron (MLP) millions of times, leading to slow rendering times, even on modern GPUs. In this paper, we demonstrate that significant speed-ups are possible by utilizing thousands of tiny MLPs instead of one single large MLP. In our setting, each individual MLP only needs to represent parts of the scene, thus smaller and faster-to-evaluate MLPs can be used. By combining this divide-and-conquer strategy with further optimizations, rendering is accelerated by two orders of magnitude compared to the original NeRF model without incurring high storage costs. Further, using teacher-student distillation for training, we show that this speed-up can be achieved without sacrificing visual quality.
aek
pure
ta
26) Image Generators With Conditionally-Independent Pixel Synthesis
Image Generators With Conditionally-Independent Pixel Synthesis
Ivan AnokhinKirill DemochkinTaras KhakhulinGleb SterkinVictor LempitskyDenis Korzhenkov
aek
ta

Sunday 04 July 2021

25) [2021] Decomposing 3D Scenes into Objects via Unsupervised Volume Segmentation
Decomposing 3D Scenes into Objects via Unsupervised Volume Segmentation
Karl StelznerKristian KerstingAdam R. Kosiorek
We present ObSuRF, a method which turns a single image of a scene into a 3D model represented as a set of Neural Radiance Fields (NeRFs), with each NeRF corresponding to a different object. A single forward pass of an encoder network outputs a set of latent vectors describing the objects in the scene. These vectors are used independently to condition a NeRF decoder, defining the geometry and appearance of each object. We make learning more computationally efficient by deriving a novel loss, which allows training NeRFs on RGB-D inputs without explicit ray marching. After confirming that the model performs equal or better than state of the art on three 2D image segmentation benchmarks, we apply it to two multi-object 3D datasets: A multiview version of CLEVR, and a novel dataset in which scenes are populated by ShapeNet models. We find that after training ObSuRF on RGB-D views of training scenes, it is capable of not only recovering the 3D geometry of a scene depicted in a single input image, but also to segment it into objects, despite receiving no supervision in that regard.
ta
24) [2020] SPACE: Unsupervised Object-Oriented Scene Representation via Spatial Attention and Decomposition
SPACE: Unsupervised Object-Oriented Scene Representation via Spatial Attention and Decomposition
Zhixuan LinYi-Fu WuSkand Vishwanath PeriWeihao SunGautam SinghFei DengJindong JiangSungjin Ahn
The ability to decompose complex multi-object scenes into meaningful abstractions like objects is fundamental to achieve higher-level cognition. Previous approaches for unsupervised object-oriented scene representation learning are either based on spatial-attention or scene-mixture approaches and limited in scalability which is a main obstacle towards modeling real-world scenes. In this paper, we propose a generative latent variable model, called SPACE, that provides a unified probabilistic modeling framework that combines the best of spatial-attention and scene-mixture approaches. SPACE can explicitly provide factorized object representations for foreground objects while also decomposing background segments of complex morphology. Previous models are good at either of these, but not both. SPACE also resolves the scalability problems of previous methods by incorporating parallel spatial-attention and thus is applicable to scenes with a large number of objects without performance degradations. We show through experiments on Atari and 3D-Rooms that SPACE achieves the above properties consistently in comparison to SPAIR, IODINE, and GENESIS. Results of our experiments can be found on our project website: https://sites.google.com/view/space-project-page
ta
23) [2020] Object-Centric Learning with Slot Attention
Object-Centric Learning with Slot Attention
Francesco LocatelloDirk WeissenbornThomas UnterthinerAravindh MahendranGeorg HeigoldJakob UszkoreitAlexey DosovitskiyThomas Kipf
Learning object-centric representations of complex scenes is a promising step towards enabling efficient abstract reasoning from low-level perceptual features. Yet, most deep learning approaches learn distributed representations that do not capture the compositional properties of natural scenes. In this paper, we present the Slot Attention module, an architectural component that interfaces with perceptual representations such as the output of a convolutional neural network and produces a set of task-dependent abstract representations which we call slots. These slots are exchangeable and can bind to any object in the input by specializing through a competitive procedure over multiple rounds of attention. We empirically demonstrate that Slot Attention can extract object-centric representations that enable generalization to unseen compositions when trained on unsupervised object discovery and supervised property prediction tasks.
ta
22) [2020] On the Binding Problem in Artificial Neural Networks
On the Binding Problem in Artificial Neural Networks
Klaus GreffSjoerd van SteenkisteJürgen Schmidhuber
Contemporary neural networks still fall short of human-level generalization, which extends far beyond our direct experiences. In this paper, we argue that the underlying cause for this shortcoming is their inability to dynamically and flexibly bind information that is distributed throughout the network. This binding problem affects their capacity to acquire a compositional understanding of the world in terms of symbol-like entities (like objects), which is crucial for generalizing in predictable and systematic ways. To address this issue, we propose a unifying framework that revolves around forming meaningful entities from unstructured sensory inputs (segregation), maintaining this separation of information at a representational level (representation), and using these entities to construct new inferences, predictions, and behaviors (composition). Our analysis draws inspiration from a wealth of research in neuroscience and cognitive psychology, and surveys relevant mechanisms from the machine learning literature, to help identify a combination of inductive biases that allow symbolic information processing to emerge naturally in neural networks. We believe that a compositional approach to AI, in terms of grounded symbol-like representations, is of fundamental importance for realizing human-level generalization, and we hope that this paper may contribute towards that goal as a reference and inspiration.
ta
21) [2021] GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields
GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields
Michael NiemeyerAndreas Geiger
Deep generative models allow for photorealistic image synthesis at high resolutions. But for many applications, this is not enough: content creation also needs to be controllable. While several recent works investigate how to disentangle underlying factors of variation in the data, most of them operate in 2D and hence ignore that our world is three-dimensional. Further, only few works consider the compositional nature of scenes. Our key hypothesis is that incorporating a compositional 3D scene representation into the generative model leads to more controllable image synthesis. Representing scenes as compositional generative neural feature fields allows us to disentangle one or multiple objects from the background as well as individual objects' shapes and appearances while learning from unstructured and unposed image collections without any additional supervision. Combining this scene representation with a neural rendering pipeline yields a fast and realistic image synthesis model. As evidenced by our experiments, our model is able to disentangle individual objects and allows for translating and rotating them in the scene as well as changing the camera pose.
som
ta

Friday 02 July 2021

20) [2021] Decision Transformer: Reinforcement Learning via Sequence Modeling
Decision Transformer: Reinforcement Learning via Sequence Modeling
Lili ChenKevin LuAravind RajeswaranKimin LeeAditya GroverMichael LaskinPieter AbbeelAravind SrinivasIgor Mordatch
We introduce a framework that abstracts Reinforcement Learning (RL) as a sequence modeling problem. This allows us to draw upon the simplicity and scalability of the Transformer architecture, and associated advances in language modeling such as GPT-x and BERT. In particular, we present Decision Transformer, an architecture that casts the problem of RL as conditional sequence modeling. Unlike prior approaches to RL that fit value functions or compute policy gradients, Decision Transformer simply outputs the optimal actions by leveraging a causally masked Transformer. By conditioning an autoregressive model on the desired return (reward), past states, and actions, our Decision Transformer model can generate future actions that achieve the desired return. Despite its simplicity, Decision Transformer matches or exceeds the performance of state-of-the-art model-free offline RL baselines on Atari, OpenAI Gym, and Key-to-Door tasks.
ta
19) [2021] Encoding in Style: a StyleGAN Encoder for Image-to-Image Translation
Encoding in Style: a StyleGAN Encoder for Image-to-Image Translation
Elad RichardsonYuval AlalufOr PatashnikYotam NitzanYaniv AzarStav ShapiroDaniel Cohen-Or
We present a generic image-to-image translation framework, pixel2style2pixel (pSp). Our pSp framework is based on a novel encoder network that directly generates a series of style vectors which are fed into a pretrained StyleGAN generator, forming the extended W+ latent space. We first show that our encoder can directly embed real images into W+, with no additional optimization. Next, we propose utilizing our encoder to directly solve image-to-image translation tasks, defining them as encoding problems from some input domain into the latent domain. By deviating from the standard invert first, edit later methodology used with previous StyleGAN encoders, our approach can handle a variety of tasks even when the input image is not represented in the StyleGAN domain. We show that solving translation tasks through StyleGAN significantly simplifies the training process, as no adversary is required, has better support for solving tasks without pixel-to-pixel correspondence, and inherently supports multi-modal synthesis via the resampling of styles. Finally, we demonstrate the potential of our framework on a variety of facial image-to-image translation tasks, even when compared to state-of-the-art solutions designed specifically for a single task, and further show that it can be extended beyond the human facial domain.
ploy
ta
18) [2020] MSG-GAN: Multi-Scale Gradients for Generative Adversarial Networks
MSG-GAN: Multi-Scale Gradients for Generative Adversarial Networks
Animesh KarnewarOliver Wang
While Generative Adversarial Networks (GANs) have seen huge successes in image synthesis tasks, they are notoriously difficult to adapt to different datasets, in part due to instability during training and sensitivity to hyperparameters. One commonly accepted reason for this instability is that gradients passing from the discriminator to the generator become uninformative when there isn't enough overlap in the supports of the real and fake distributions. In this work, we propose the Multi-Scale Gradient Generative Adversarial Network (MSG-GAN), a simple but effective technique for addressing this by allowing the flow of gradients from the discriminator to the generator at multiple scales. This technique provides a stable approach for high resolution image synthesis, and serves as an alternative to the commonly used progressive growing technique. We show that MSG-GAN converges stably on a variety of image datasets of different sizes, resolutions and domains, as well as different types of loss functions and architectures, all with the same set of fixed hyperparameters. When compared to state-of-the-art GANs, our approach matches or exceeds the performance in most of the cases we tried.
ta
17) [2018] AttGAN: Facial Attribute Editing by Only Changing What You Want
AttGAN: Facial Attribute Editing by Only Changing What You Want
Zhenliang HeWangmeng ZuoMeina KanShiguang ShanXilin Chen
Facial attribute editing aims to manipulate single or multiple attributes of a face image, i.e., to generate a new face with desired attributes while preserving other details. Recently, generative adversarial net (GAN) and encoder-decoder architecture are usually incorporated to handle this task with promising results. Based on the encoder-decoder architecture, facial attribute editing is achieved by decoding the latent representation of the given face conditioned on the desired attributes. Some existing methods attempt to establish an attribute-independent latent representation for further attribute editing. However, such attribute-independent constraint on the latent representation is excessive because it restricts the capacity of the latent representation and may result in information loss, leading to over-smooth and distorted generation. Instead of imposing constraints on the latent representation, in this work we apply an attribute classification constraint to the generated image to just guarantee the correct change of desired attributes, i.e., to "change what you want". Meanwhile, the reconstruction learning is introduced to preserve attribute-excluding details, in other words, to "only change what you want". Besides, the adversarial learning is employed for visually realistic editing. These three components cooperate with each other forming an effective framework for high quality facial attribute editing, referred as AttGAN. Furthermore, our method is also directly applicable for attribute intensity control and can be naturally extended for attribute style manipulation. Experiments on CelebA dataset show that our method outperforms the state-of-the-arts on realistic attribute editing with facial details well preserved.
moke
ploy
ta
16) [2021] UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models
UNIT-DDPM: UNpaired Image Translation with Denoising Diffusion Probabilistic Models
Hiroshi SasakiChris G. WillcocksToby P. Breckon
We propose a novel unpaired image-to-image translation method that uses denoising diffusion probabilistic models without requiring adversarial training. Our method, UNpaired Image Translation with Denoising Diffusion Probabilistic Models (UNIT-DDPM), trains a generative model to infer the joint distribution of images over both domains as a Markov chain by minimising a denoising score matching objective conditioned on the other domain. In particular, we update both domain translation models simultaneously, and we generate target domain images by a denoising Markov Chain Monte Carlo approach that is conditioned on the input source domain images, based on Langevin dynamics. Our approach provides stable model training for image-to-image translation and generates high-quality image outputs. This enables state-of-the-art Fr\'echet Inception Distance (FID) performance on several public datasets, including both colour and multispectral imagery, significantly outperforming the contemporary adversarial image-to-image translation methods.
ta
15) [2020] PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models
PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models
Sachit MenonAlexandru DamianShijia HuNikhil RaviCynthia Rudin
The primary aim of single-image super-resolution is to construct high-resolution (HR) images from corresponding low-resolution (LR) inputs. In previous approaches, which have generally been supervised, the training objective typically measures a pixel-wise average distance between the super-resolved (SR) and HR images. Optimizing such metrics often leads to blurring, especially in high variance (detailed) regions. We propose an alternative formulation of the super-resolution problem based on creating realistic SR images that downscale correctly. We present an algorithm addressing this problem, PULSE (Photo Upsampling via Latent Space Exploration), which generates high-resolution, realistic images at resolutions previously unseen in the literature. It accomplishes this in an entirely self-supervised fashion and is not confined to a specific degradation operator used during training, unlike previous methods (which require supervised training on databases of LR-HR image pairs). Instead of starting with the LR image and slowly adding detail, PULSE traverses the high-resolution natural image manifold, searching for images that downscale to the original LR image. This is formalized through the "downscaling loss," which guides exploration through the latent space of a generative model. By leveraging properties of high-dimensional Gaussians, we restrict the search space to guarantee realistic outputs. PULSE thereby generates super-resolved images that both are realistic and downscale correctly. We show proof of concept of our approach in the domain of face super-resolution (i.e., face hallucination). We also present a discussion of the limitations and biases of the method as currently implemented with an accompanying model card with relevant metrics. Our method outperforms state-of-the-art methods in perceptual quality at higher resolutions and scale factors than previously possible.
ploy
ta
14) [2021] NVAE: A Deep Hierarchical Variational Autoencoder
NVAE: A Deep Hierarchical Variational Autoencoder
Arash VahdatJan Kautz
Normalizing flows, autoregressive models, variational autoencoders (VAEs), and deep energy-based models are among competing likelihood-based frameworks for deep generative learning. Among them, VAEs have the advantage of fast and tractable sampling and easy-to-access encoding networks. However, they are currently outperformed by other models such as normalizing flows and autoregressive models. While the majority of the research in VAEs is focused on the statistical challenges, we explore the orthogonal direction of carefully designing neural architectures for hierarchical VAEs. We propose Nouveau VAE (NVAE), a deep hierarchical VAE built for image generation using depth-wise separable convolutions and batch normalization. NVAE is equipped with a residual parameterization of Normal distributions and its training is stabilized by spectral regularization. We show that NVAE achieves state-of-the-art results among non-autoregressive likelihood-based models on the MNIST, CIFAR-10, CelebA 64, and CelebA HQ datasets and it provides a strong baseline on FFHQ. For example, on CIFAR-10, NVAE pushes the state-of-the-art from 2.98 to 2.91 bits per dimension, and it produces high-quality images on CelebA HQ. To the best of our knowledge, NVAE is the first successful VAE applied to natural images as large as 256$\times$256 pixels. The source code is available at https://github.com/NVlabs/NVAE .
ta
13) [2020] Curriculum DeepSDF
Curriculum DeepSDF
Yueqi DuanHaidong ZhuHe WangLi YiRam NevatiaLeonidas J. Guibas
When learning to sketch, beginners start with simple and flexible shapes, and then gradually strive for more complex and accurate ones in the subsequent training sessions. In this paper, we design a "shape curriculum" for learning continuous Signed Distance Function (SDF) on shapes, namely Curriculum DeepSDF. Inspired by how humans learn, Curriculum DeepSDF organizes the learning task in ascending order of difficulty according to the following two criteria: surface accuracy and sample difficulty. The former considers stringency in supervising with ground truth, while the latter regards the weights of hard training samples near complex geometry and fine structure. More specifically, Curriculum DeepSDF learns to reconstruct coarse shapes at first, and then gradually increases the accuracy and focuses more on complex local details. Experimental results show that a carefully-designed curriculum leads to significantly better shape reconstructions with the same training data, training epochs and network architecture as DeepSDF. We believe that the application of shape curricula can benefit the training process of a wide variety of 3D shape representation learning methods.
ta
12) [2021] Diffusion Models Beat GANs on Image Synthesis
Diffusion Models Beat GANs on Image Synthesis
Prafulla DhariwalAlex Nichol
We show that diffusion models can achieve image sample quality superior to the current state-of-the-art generative models. We achieve this on unconditional image synthesis by finding a better architecture through a series of ablations. For conditional image synthesis, we further improve sample quality with classifier guidance: a simple, compute-efficient method for trading off diversity for fidelity using gradients from a classifier. We achieve an FID of 2.97 on ImageNet 128$\times$128, 4.59 on ImageNet 256$\times$256, and 7.72 on ImageNet 512$\times$512, and we match BigGAN-deep even with as few as 25 forward passes per sample, all while maintaining better coverage of the distribution. Finally, we find that classifier guidance combines well with upsampling diffusion models, further improving FID to 3.94 on ImageNet 256$\times$256 and 3.85 on ImageNet 512$\times$512. We release our code at https://github.com/openai/guided-diffusion
moke
ploy
som
ta
11) [2021] Image Super-Resolution via Iterative Refinement
Image Super-Resolution via Iterative Refinement
Chitwan SahariaJonathan HoWilliam ChanTim SalimansDavid J. FleetMohammad Norouzi
We present SR3, an approach to image Super-Resolution via Repeated Refinement. SR3 adapts denoising diffusion probabilistic models to conditional image generation and performs super-resolution through a stochastic denoising process. Inference starts with pure Gaussian noise and iteratively refines the noisy output using a U-Net model trained on denoising at various noise levels. SR3 exhibits strong performance on super-resolution tasks at different magnification factors, on faces and natural images. We conduct human evaluation on a standard 8X face super-resolution task on CelebA-HQ, comparing with SOTA GAN methods. SR3 achieves a fool rate close to 50%, suggesting photo-realistic outputs, while GANs do not exceed a fool rate of 34%. We further show the effectiveness of SR3 in cascaded image generation, where generative models are chained with super-resolution models, yielding a competitive FID score of 11.3 on ImageNet.
ta
10) [2021] Neural Sparse Voxel Fields
Neural Sparse Voxel Fields
Lingjie LiuJiatao GuKyaw Zaw LinTat-Seng ChuaChristian Theobalt
Photo-realistic free-viewpoint rendering of real-world scenes using classical computer graphics techniques is challenging, because it requires the difficult step of capturing detailed appearance and geometry models. Recent studies have demonstrated promising results by learning scene representations that implicitly encode both geometry and appearance without 3D supervision. However, existing approaches in practice often show blurry renderings caused by the limited network capacity or the difficulty in finding accurate intersections of camera rays with the scene geometry. Synthesizing high-resolution imagery from these representations often requires time-consuming optical ray marching. In this work, we introduce Neural Sparse Voxel Fields (NSVF), a new neural scene representation for fast and high-quality free-viewpoint rendering. NSVF defines a set of voxel-bounded implicit fields organized in a sparse voxel octree to model local properties in each cell. We progressively learn the underlying voxel structures with a differentiable ray-marching operation from only a set of posed RGB images. With the sparse voxel octree structure, rendering novel views can be accelerated by skipping the voxels containing no relevant scene content. Our method is typically over 10 times faster than the state-of-the-art (namely, NeRF(Mildenhall et al., 2020)) at inference time while achieving higher quality results. Furthermore, by utilizing an explicit sparse voxel representation, our method can easily be applied to scene editing and scene composition. We also demonstrate several challenging tasks, including multi-scene learning, free-viewpoint rendering of a moving human, and large-scale scene rendering. Code and data are available at our website: https://github.com/facebookresearch/NSVF.
aek
ta
9) [2021] Alias-Free Generative Adversarial Networks
Alias-Free Generative Adversarial Networks
Tero KarrasMiika AittalaSamuli LaineErik HärkönenJanne HellstenJaakko LehtinenTimo Aila
We observe that despite their hierarchical convolutional nature, the synthesis process of typical generative adversarial networks depends on absolute pixel coordinates in an unhealthy manner. This manifests itself as, e.g., detail appearing to be glued to image coordinates instead of the surfaces of depicted objects. We trace the root cause to careless signal processing that causes aliasing in the generator network. Interpreting all signals in the network as continuous, we derive generally applicable, small architectural changes that guarantee that unwanted information cannot leak into the hierarchical synthesis process. The resulting networks match the FID of StyleGAN2 but differ dramatically in their internal representations, and they are fully equivariant to translation and rotation even at subpixel scales. Our results pave the way for generative models better suited for video and animation.
ploy
som
ta

Thursday 01 July 2021

8) [2020] pixelNeRF: Neural Radiance Fields from One or Few Images
pixelNeRF: Neural Radiance Fields from One or Few Images
Alex YuVickie YeMatthew TancikAngjoo Kanazawa
We propose pixelNeRF, a learning framework that predicts a continuous neural scene representation conditioned on one or few input images. The existing approach for constructing neural radiance fields involves optimizing the representation to every scene independently, requiring many calibrated views and significant compute time. We take a step towards resolving these shortcomings by introducing an architecture that conditions a NeRF on image inputs in a fully convolutional manner. This allows the network to be trained across multiple scenes to learn a scene prior, enabling it to perform novel view synthesis in a feed-forward manner from a sparse set of views (as few as one). Leveraging the volume rendering approach of NeRF, our model can be trained directly from images with no explicit 3D supervision. We conduct extensive experiments on ShapeNet benchmarks for single image novel view synthesis tasks with held-out objects as well as entire unseen categories. We further demonstrate the flexibility of pixelNeRF by demonstrating it on multi-object ShapeNet scenes and real scenes from the DTU dataset. In all cases, pixelNeRF outperforms current state-of-the-art baselines for novel view synthesis and single image 3D reconstruction. For the video and code, please visit the project website: https://alexyu.net/pixelnerf
aek
ta
7) [2021] Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields
Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields
Jonathan T. BarronBen MildenhallMatthew TancikPeter HedmanRicardo Martin-BruallaPratul P. Srinivasan
The rendering procedure used by neural radiance fields (NeRF) samples a scene with a single ray per pixel and may therefore produce renderings that are excessively blurred or aliased when training or testing images observe scene content at different resolutions. The straightforward solution of supersampling by rendering with multiple rays per pixel is impractical for NeRF, because rendering each ray requires querying a multilayer perceptron hundreds of times. Our solution, which we call "mip-NeRF" (a la "mipmap"), extends NeRF to represent the scene at a continuously-valued scale. By efficiently rendering anti-aliased conical frustums instead of rays, mip-NeRF reduces objectionable aliasing artifacts and significantly improves NeRF's ability to represent fine details, while also being 7% faster than NeRF and half the size. Compared to NeRF, mip-NeRF reduces average error rates by 17% on the dataset presented with NeRF and by 60% on a challenging multiscale variant of that dataset that we present. Mip-NeRF is also able to match the accuracy of a brute-force supersampled NeRF on our multiscale dataset while being 22x faster.
aek
ta
6) [2021] PlenOctrees for Real-time Rendering of Neural Radiance Fields
PlenOctrees for Real-time Rendering of Neural Radiance Fields
Alex YuRuilong LiMatthew TancikHao LiRen NgAngjoo Kanazawa
We introduce a method to render Neural Radiance Fields (NeRFs) in real time using PlenOctrees, an octree-based 3D representation which supports view-dependent effects. Our method can render 800x800 images at more than 150 FPS, which is over 3000 times faster than conventional NeRFs. We do so without sacrificing quality while preserving the ability of NeRFs to perform free-viewpoint rendering of scenes with arbitrary geometry and view-dependent effects. Real-time performance is achieved by pre-tabulating the NeRF into a PlenOctree. In order to preserve view-dependent effects such as specularities, we factorize the appearance via closed-form spherical basis functions. Specifically, we show that it is possible to train NeRFs to predict a spherical harmonic representation of radiance, removing the viewing direction as an input to the neural network. Furthermore, we show that PlenOctrees can be directly optimized to further minimize the reconstruction loss, which leads to equal or better quality compared to competing methods. Moreover, this octree optimization step can be used to reduce the training time, as we no longer need to wait for the NeRF training to converge fully. Our real-time neural rendering approach may potentially enable new applications such as 6-DOF industrial and product visualizations, as well as next generation AR/VR systems. PlenOctrees are amenable to in-browser rendering as well; please visit the project page for the interactive online demo, as well as video and code: https://alexyu.net/plenoctrees
aek
5) [2021] Baking Neural Radiance Fields for Real-Time View Synthesis
Baking Neural Radiance Fields for Real-Time View Synthesis
Peter HedmanPratul P. SrinivasanBen MildenhallJonathan T. BarronPaul Debevec
Neural volumetric representations such as Neural Radiance Fields (NeRF) have emerged as a compelling technique for learning to represent 3D scenes from images with the goal of rendering photorealistic images of the scene from unobserved viewpoints. However, NeRF's computational requirements are prohibitive for real-time applications: rendering views from a trained NeRF requires querying a multilayer perceptron (MLP) hundreds of times per ray. We present a method to train a NeRF, then precompute and store (i.e. "bake") it as a novel representation called a Sparse Neural Radiance Grid (SNeRG) that enables real-time rendering on commodity hardware. To achieve this, we introduce 1) a reformulation of NeRF's architecture, and 2) a sparse voxel grid representation with learned feature vectors. The resulting scene representation retains NeRF's ability to render fine geometric details and view-dependent appearance, is compact (averaging less than 90 MB per scene), and can be rendered in real-time (higher than 30 frames per second on a laptop GPU). Actual screen captures are shown in our video.
aek
4) [2019] DeepView: View Synthesis With Learned Gradient Descent
DeepView: View Synthesis With Learned Gradient Descent
John FlynnMichael BroxtonPaul DebevecMatthew DuVallGraham FyffeRyan OverbeckNoah SnavelyRichard Tucker
We present a novel approach to view synthesis using multiplane images (MPIs). Building on recent advances in learned gradient descent, our algorithm generates an MPI from a set of sparse camera viewpoints. The resulting method incorporates occlusion reasoning, improving performance on challenging scene features such as object boundaries, lighting reflections, thin structures, and scenes with high depth complexity. We show that our method achieves high-quality, state-of-the-art results on two datasets: the Kalantari light field dataset, and a new camera array dataset, Spaces, which we make publicly available.
aek
3) [2020] Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains
Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains
Matthew TancikPratul P. SrinivasanBen MildenhallSara Fridovich-KeilNithin RaghavanUtkarsh SinghalRavi RamamoorthiJonathan T. BarronRen Ng
We show that passing input points through a simple Fourier feature mapping enables a multilayer perceptron (MLP) to learn high-frequency functions in low-dimensional problem domains. These results shed light on recent advances in computer vision and graphics that achieve state-of-the-art results by using MLPs to represent complex 3D objects and scenes. Using tools from the neural tangent kernel (NTK) literature, we show that a standard MLP fails to learn high frequencies both in theory and in practice. To overcome this spectral bias, we use a Fourier feature mapping to transform the effective NTK into a stationary kernel with a tunable bandwidth. We suggest an approach for selecting problem-specific Fourier features that greatly improves the performance of MLPs for low-dimensional regression tasks relevant to the computer vision and graphics communities.
aek
2) [2021] Improved Denoising Diffusion Probabilistic Models
Improved Denoising Diffusion Probabilistic Models
Alex NicholPrafulla Dhariwal
Denoising diffusion probabilistic models (DDPM) are a class of generative models which have recently been shown to produce excellent samples. We show that with a few simple modifications, DDPMs can also achieve competitive log-likelihoods while maintaining high sample quality. Additionally, we find that learning variances of the reverse diffusion process allows sampling with an order of magnitude fewer forward passes with a negligible difference in sample quality, which is important for the practical deployment of these models. We additionally use precision and recall to compare how well DDPMs and GANs cover the target distribution. Finally, we show that the sample quality and likelihood of these models scale smoothly with model capacity and training compute, making them easily scalable. We release our code at https://github.com/openai/improved-diffusion
aek
1) [2021] Binary TTC: A Temporal Geofence for Autonomous Navigation
Binary TTC: A Temporal Geofence for Autonomous Navigation
Abhishek BadkiOrazio GalloJan KautzPradeep Sen
Time-to-contact (TTC), the time for an object to collide with the observer's plane, is a powerful tool for path planning: it is potentially more informative than the depth, velocity, and acceleration of objects in the scene -- even for humans. TTC presents several advantages, including requiring only a monocular, uncalibrated camera. However, regressing TTC for each pixel is not straightforward, and most existing methods make over-simplifying assumptions about the scene. We address this challenge by estimating TTC via a series of simpler, binary classifications. We predict with low latency whether the observer will collide with an obstacle within a certain time, which is often more critical than knowing exact, per-pixel TTC. For such scenarios, our method offers a temporal geofence in 6.4 ms -- over 25x faster than existing methods. Our approach can also estimate per-pixel TTC with arbitrarily fine quantization (including continuous values), when the computational budget allows for it. To the best of our knowledge, our method is the first to offer TTC information (binary or coarsely quantized) at sufficiently high frame-rates for practical use.
nick